Đề thi tham khảo kỳ thi Tốt nghiệp THPT môn Toán - Năm học 2023-2024 (Có đáp án)

Câu 12. Cho số phức z=2+9i , phần thực của số phức  z² bằng
A.  -77. B. 4 . C. 36 . D. 85 .
Câu 13. Cho khối lập phương có cạnh bằng 2. Thể tích của khối lập phương đã cho bằng
A. 6. B. 8 . C.  8/3. D. 4 .
docx 7 trang vanquan 12/05/2023 8520
Bạn đang xem tài liệu "Đề thi tham khảo kỳ thi Tốt nghiệp THPT môn Toán - Năm học 2023-2024 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docxde_thi_tham_khao_ky_thi_tot_nghiep_thpt_mon_toan_nam_hoc_202.docx

Nội dung text: Đề thi tham khảo kỳ thi Tốt nghiệp THPT môn Toán - Năm học 2023-2024 (Có đáp án)

  1. BỘ GIÁO DỤC VÀ ĐÀO KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM TẠO 2023 ĐỀ THI THAM KHẢO Bài thi: TOÁN Thời gian làm bài: 90 phút, không kể thời gian phát đề Họ, tên thí sinh: Số báo danh: Câu 1. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z 7 6i có tọa độ là A. 6;7 .B. 6;7 . C. 7;6 . D. 7; 6 . Câu 2. Trên khoảng 0; , đạo hàm của hàm số y log3 x là: 1 1 ln3 1 A. y .B. y .C. y .D. y x xln3 x xln3 Câu 3. Trên khoảng 0; , đạo hàm của hàm số y x là: 1 A. y x 1 .B. y x 1 . C. y x 1 .D. y x . Câu 4. Tập nghiệm của bất phương trình 2x 1 4 là A. ;1.B. 1; . C. 1; .D. ;1 . 1 Câu 5. Cho cấp số nhân u với u 2 và công bội q . Giá trị của u bằng n 1 2 3 1 1 7 A. 3.B. .C. .D. 2 4 2 Câu 6. Trong không gian Oxyz , mặt phẳng P : x y z 1 0 có một vectơ pháp tuyến là:     A. n1 1;1;1 B. n4 1;1; 1 C. n3 1;1;1 . D. n2 1; 1;1 . ax b Câu 7. Cho hàm số y có đồ thị là đường cong trong hình bên. cx d Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là A. 0; 2 .B. 2;0 . C. 2;0 .D. 0;2 . 4 4 4 Câu 8. Nếu 1 f x dx 2 và 1 g x dx 3 thì 1 f x g x dx bằng A. 5.B. 6 .C. 1.D. 1.
  2. Câu 16. Phần ảo của số phức z 2 3i là A. 3 . B. 2 . C. 2 .D. 3 . Câu 17. Cho hình nón có đường kính đáy 2r và độ dài đường sinh l . Diện tích xung quanh của hình nón đã cho bằng 2 1 A. 2 rl . B. rl 2 . C. rl . D. r 2l . 3 3 x 1 y 2 z 3 Câu 18. Trong không gian Oxyz , cho đường thẳng d : . Điểm nào dưới đây thuộc d 2 1 2 ? A. P 1;2;3 . B. Q 1;2; 3 .C. N 2;1;2 . D. M 2; 1; 2 . Câu 19. Cho hàm số y ax4 bx2 c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là A. 1;2 . B. 0;1 .C. 1;2 .D. 1;0 . 2x 1 Câu 20. Tiệm cận ngang của đồ thị hàm số y là đường thẳng có phương trình: 3x 1 1 2 1 2 A. y .B. y .C. y . D. y . 3 3 3 3 Câu 21. Tập nghiệm của bất phương trình log x 2 0 là A. 2;3 . B. ;3 . C. 3; .D. 12; . Câu 22. Cho tập hợp A có 15 phần tử. Số tập con gồm hai phần tử của A bằng A. 225.B. 30 .C. 210.D. 105 . 1 Câu 23. Cho dx F x C . Khẳng định nào dưới đây đúng? x 2 1 1 A. F x B. F x lnx . C. F x . D. F x x2 x x2 2 1 Câu 24. Nếu f x dx 4 thì 2 bằng 0 0 f x 2 dx 2 A. 0 .B. 6.C. 8.D. 2 . Câu 25. Cho hàm số f x cosx x . Khẳng định nào dưới đây đúng? A. f x dx sinx x2 C .B. f x dx sinx x2 C . x2 x2 C. f x dx sinx C .D. f x dx sinx C . 2 2 Câu 26. Cho hàm số y f x có bảng biến thiên như sau:
  3. Góc giữa hai mặt phẳng SBC và ABC bằng A. 60 . B. 30 .C. 90 .D. 45 . Câu 31. Cho hàm số bậc ba y f x có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị nguyên của tham số m để phương trình f x m có ba nghiệm thực phân biệt? A. 2.B. 5 .C. 3.D. 4 . Câu 32. Cho hàm số y f x có đạo hàm f x (x 2)2 1 x với mọi x R . Hàm số đã cho đồng biến trên khoảng nào dưới đây? A. 1;2 .B. 1; . C. 2; .D. ;1 . Câu 33. Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng 9 18 4 1 A. . B. . C. . D. 35 35 35 7 Câu 34. Tích tất cả các nghiệm của phương trình ln2 x 2lnx 3 0 bằng 1 1 A. . B. 2 . C. 3 . D. e3 e2 Câu 35. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn z 2i 1 là một đường tròn. Tâm của đường tròn đó có tọa độ là A. 0;2 . B. 2;0 .C. 0; 2 .D. 2;0 .
  4. 5 4 1 1 A. .B. .C. .D. . 2 3 2 4 Câu 45. Trên tập hợp số phức, xét phương trình z2 2 m 1 z m2 0 ( m là tham số thực). Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mãn z1 z2 2 ? A. 1.B. 4.C. 2.D. 3 . x 2 y 1 z 1 Câu 46. Trong không gian Oxyz , cho điểm A 0;1;2 và đường thẳng d : . Gọi P 2 2 3 là mặt phẳng đi qua A và chứa d . Khoảng cách từ điểm M 5; 1;3 đến P bằng 1 11 A. 5.B. . C. 1 .D. . 3 3 Câu 47. Có bao nhiêu cặp số nguyên x; y thỏa mãn 2 2 2 2 2 2 log3 x y x log2 x y log3 x log2 x y 24x ? A. 89.B. 48 .C. 90 .D. 49 . 800 Câu 48. Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng . Gọi A và B là hai điểm 3 thuộc đường tròn đáy sao cho AB 12 , khoảng cách từ tâm của đường tròn đáy đến mặt phẳng SAB bằng 24 5 A. 8 2 .B. .C. 4 2 . D. . 5 24 Câu 49. Trong không gian Oxyz , cho hai điểm A 0;0;10 và B 3;4;6 . Xét các điểm M thay đổi sao cho tam giác OAM không có góc tù và có diện tích bằng 15. Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây? A. 4;5 . B. 3;4 . C. 2;3 . D. 6;7 . Câu 50. Có bao nhiêu giá trị nguyên của tham số a 10; để hàm số y x3 a 2 x 9 a2 đồng biến trên khoảng 0;1 ? A. 12 .B. 11.C. 6.D. 5 . HẾT ĐÁP ÁN 1 D 11 D 21 C 31 C 41 B 2 B 12 A 22 D 32 D 42 C 3 A 13 B 23 C 33 A 43 B 4 D 14 B 24 D 34 D 44 C 5 B 15 C 25 D 35 C 45 C 6 C 16 A 26 D 36 C 46 C 7 B 17 C 27 B 37 A 47 B 8 A 18 B 28 D 38 C 48 C 9 B 19 B 29 D 39 D 49 B 10 D 20 D 30 D 40 B 50 B