Đề thi thử Tốt nghiệp THPT lần 2 môn Toán - Mã đề 101 - Năm học 2023-2024 - Trường THPT Ngô Sỹ Liên (Có đáp án)
Câu 29. Gieo ngẫu nhiên một con xúc sắc cân đối đồng chất 2 lần. Tính xác suất để số chấm của hai lần gieo là bằng nhau
A. 1/6 B. 1/5 C. 1/7 D. 1/8
A. 1/6 B. 1/5 C. 1/7 D. 1/8
Bạn đang xem tài liệu "Đề thi thử Tốt nghiệp THPT lần 2 môn Toán - Mã đề 101 - Năm học 2023-2024 - Trường THPT Ngô Sỹ Liên (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
de_thi_thu_tot_nghiep_thpt_lan_2_mon_toan_ma_de_101_nam_hoc.pdf
Nội dung text: Đề thi thử Tốt nghiệp THPT lần 2 môn Toán - Mã đề 101 - Năm học 2023-2024 - Trường THPT Ngô Sỹ Liên (Có đáp án)
- SỞ GIÁO DỤC VÀ ĐÀO TẠO BẮC GIANG ĐỀ THI THÁNG LẦN 2 TRƯỜNG THPT NGÔ SỸ LIÊN NĂM HỌC: 2023 - 2024 MÔN: TOÁN 12 Thời gian làm bài: 90 (không kể thời gian phát đề) Họ và tên: Số báo danh: Mã đề 101 2 Câu 1. Cho cấp số nhân (u ) có u = −3 và q = . Mệnh đề nào sau đây đúng? n 1 3 27 16 27 16 A. u = − . B. u = . C. u = . D. u = − . 5 16 5 27 5 16 5 27 Câu 2. Cho khối lăng trụ đứng ABC. A′′′ B C có BAC =30 ° , AB= 3 a và AC= 4 a . Gọi M là trung điểm của 35a BC′′, biết khoảng các từ M đến mặt phẳng (B′ AC) bằng . Tính thể tích khối lăng trụ đã cho. 10 A. 4a3 . B. 9a3 . C. 27a3 . D. 7a3 . 1 Câu 3. Tìm nguyên hàm của hàm số fx( ) = x2 . 2 3 3 3 A. fx( )d x= x2 + C. B. fx( )d x= x2 + C. ∫ 3 ∫ 2 −1 1 −1 C. fx( )d2 x=−+ x2 C. D. fx( )d x=−+ x2 C. ∫ ∫ 2 Câu 4. Cho hàm số y= fx( ) có đạo hàm fx'4( ) = x( − x) , ∀∈x . Khẳng định nào sau đây đúng? A. ff(42) < ( ) . B. ff(40) < ( ) . C. ff(56) < ( ) . D. ff(02) < ( ) . Câu 5. Cho khối nón có độ dài đường sinh l = 5 và chiều cao h = 3. Thể tích khối nón đã cho bằng A. 16π . B. 12π . C. 24π . D. 4π . Câu 6. Tập hợp các điểm biểu diễn số phức z thỏa mãn zi+−12 = là đường tròn có phương trình 22 22 22 A. ( xy+1) +−( 14) =. B. ( xy+1) ++( 14) =. C. ( xy−1) +−( 14) =. D. 22 ( xy−1) ++( 14) =. Câu 7. Có bao nhiêu số nguyên dương a sao cho ứng với mỗi a có đúng một số nguyên b thỏa mãn (2bb− 1)(a .3 −< 4) 0. A. 26. B. 25. C. 23. Câu 8. Xét các số phức z12, z thỏa mãn z1=1, z 2 = 5, 2 zz 12 −= 3 5 . Tính zz12+ 2 . A. 85. B. 5 5. C. 11. D. 5 2. Câu 9. Trong không gian với hệ tọa độ Oxyz , cho vectơ u = (3;0;1) và v = (2;1;0) . Tính tích vô hướng uv. . A. uv.8= . B. uv.6= − . C. uv.6= . D. uv.0= . Câu 10. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức zi=32 − ? A. Q(2;− 3) . B. N (3;− 2). C. P(−3; 2) . D. M (−2;3) . Câu 11. Trong không gian Oxyz , cho hai điểm A(3; 2;− 1) , B(−1; 4; 5 ) . Phương trình mặt phẳng trung trực của đoạn thẳng AB là A. 2xy++ 3 z − 11 = 0 . B. 2xy−− 3 z += 70. C. −2xy ++ 3 z += 70. D. 2xy−− 3 z −= 70. −−x 2 Câu 12. Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = có phương trình là x −1 A. xy 1; 1 . B. xy=1; = 1 . C. xy=−=−1; 1 . D. xy=1; = − 1 . Câu 13. Một khối trụ có đường cao bằng 5, chu vi của thiết diện qua trục gấp 3 lần đường kính đáy. Thể tích của khối trụ bằng
- A. 0. B. −1. C. −3 . D. −4 . Câu 20. Cho hàm số y= fx() . Hàm số y= fx′() có bảng biến thiên như hình vẽ sau Bất phương trình fx() >− me− x có nghiệm x ∈−()2; 2 khi và chỉ khi − − A. mf≤−()2 +e2 . B. mf≤+()2 e.2 C. mf 0 được 1 5 2 A. Px= . B. Px= 8 . C. Px= 6 . D. Px= 9 . Câu 26. Cho hàm số y= fx() có đồ thị như hình vẽ sau Số nghiệm của phương trình fx 10 là A. 1. B. 4 . C. 3. D. 2 . Câu 27. Cho hình lập phương ABCD.' A B ' C ' D ' có cạnh bằng a. Góc giữa (BA ') C và ()DA' C bằng A. 600 . B. 900 . C. 450 . D. 300 . Câu 28. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc đoạn [−2024; 2024] để hàm số 21 f( x )= x32 − ( m + 3) x +− (3 mx ) + 2024 nghịch biến trên khoảng (1; 2). Số phần tử của tập S là 32 A. 2023. B. 2022. C. 2025. D. 2024. Câu 29. Gieo ngẫu nhiên một con xúc sắc cân đối đồng chất 2 lần. Tính xác suất để số chấm của hai lần gieo là bằng nhau Mã đề 101 Trang 3/6
- 25 17 A. 18 . B. 20 . C. . D. . 4 2 Câu 42. Cho hàm số y= fx( ) có đạo hàm trên , đồ thị hàm số y= fx( ) như hình vẽ. Biết diện tích hình phẳng phần sọc kẻ bằng 3 . Tính giá trị của biểu thức: 13 4 T=∫∫∫ fx′′(2 ++ 1) dx fx( 2 − 4) dx + fx( 2 − 8) dx 1 13 2 5 −1 A. T =1. B. T = 5 . C. T = . D. T = . 2 2 3 4 4 Câu 43. Cho ∫ fx( )d2 x= − và ∫ fx( )d x= 5 khi đó ∫ fx( )d x bằng: 0 3 0 A. −2 . B. 3. C. 7 . D. 5. Câu 44. Tìm nguyên hàm của hàm số fx( ) =sin x + 6 xlà A. −cosxxC ++ 3 2 . B. cosx++ 6 xC2 . C. −+cos xC. D. cosxxC++ 3 2 . 1 Câu 45. Gọi F(x) là nguyên hàm của hàm số fx()biết FF(−=− 1) 1, (1) = 1. Tính I= ∫ fx( )d x −1 A. I= 2. B. I= 0. C. I= − 2. D. I= 1. Câu 46. Cho hai số phức zi=42 + và wi=1 + . Môđun của số phức zw. bằng A. 2 2. B. 40. C. 8. D. 2 10. Câu 47. Trong không gian Oxyz , cho mặt phẳng (α) :2xyz −+−= 3 0. Phương trình mặt phẳng (β) đi qua M (0;1; 2 ) và song song với mặt phẳng (α) là A. (α) :2xyz − ++= 1 0. B. (α) :2xyz − −−= 1 0. C. (α) :2xyz − +−= 1 0. D. (α) :2xyz −+−= 2 0. Câu 48. Giá trị nhỏ nhất của hàm số yx=+−3227 x x trên đoạn [0; 4] bằng A. 68. B. −259. C. 0 . D. −4 . 2 Câu 49. Tập nghiệm của bất phương trình log3 (xx+ 4 +≥ 3) 1 là A. (−4;0) . B. (−∞; − 4] ∪[ 0; +∞) . C. [−4;0] . Câu 50. Cho hàm số fx( ) =−+ x4232 x 4. Có bao nhiêu giá trị nguyên của tham số m sao cho ứng với mỗi m , tổng giá trị các nghiệm phân biệt thuộc khoảng (− 4; 1) của phương trình fx( 2 +45 x +=) m bằng −8? A. 79 . B. 82 . C. 80 . D. 81. HẾT Mã đề 101 Trang 5/6