Đề thi thử THPT quốc gia năm học 2021-2022 môn Toán - Đề số 14 (Có đáp án)

Câu 23. Một người gửi tiết kiệm với lãi suất 8,4%/năm và lãi hàng năm được nhập vào vốn. Hỏi ít nhất 
sau bao nhiêu năm người đó thu được số tiền gấp đôi số tiền ban đầu?
A. 8 B. 9 C. 10 D. 11
Câu 24. Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (DBC) và DBC  90 . Khi quay các 
cạnh của tứ diện xung quanh trục là cạnh AB, có bao nhiêu hình nón được tạo thành?
A. 1 B. 2 C. 3 D. 4
Câu 25. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;3;2) , B(3;5;2) . Phương trình mặt 
phẳng trung trực của AB có dạng x  ay  bz  c  0. Khi đó a  b  c bằng
A. 4 B. 3 C. 2 D. 2
pdf 19 trang vanquan 23/03/2023 8180
Bạn đang xem tài liệu "Đề thi thử THPT quốc gia năm học 2021-2022 môn Toán - Đề số 14 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdfde_thi_thu_thpt_quoc_gia_nam_hoc_2021_2022_mon_toan_de_so_14.pdf

Nội dung text: Đề thi thử THPT quốc gia năm học 2021-2022 môn Toán - Đề số 14 (Có đáp án)

  1. PENBOOK ĐỀ THI THỬ THPT QUỐC GIA ĐỀ SỐ 14 NĂM HỌC: 2021 – 2022 MÔN: TOÁN Thời gian làm bài: 90 phút; không kể thời gian phát đề Câu 1. Thể tích của khối lăng trụ đều tam giác có mặt bên là hình vuông cạnh a bằng a3 3 a3 3 a3 3 a3 3 A. B. C. D. 12 6 4 3 Câu 2. Cho hàm số y f (x) có bảng biến thiên như sau Hàm số có bao nhiêu điểm cực trị? A. 1B. 3C. 2D. 4 Câu 3. Trong không gian với hệ tọa độ Oxyz, cho điểm A( 1;2;4) . Điểm nào sau đây là hình chiếu vuông góc của điểm A trên mặt phẳng (Oyz)? A. M( 1;0;0) B. N(0;2;4) C. P( 1;0;4) D. Q( 1;2;0) Câu 4. Kết quả tính đạo hàm nào sau đây sai? x x 1 1 2x 2x A. 3 3 ln 3 B. ln x C. log3 x D. e e x x ln 3 Câu 5. Cho số phức z 2 3i . Khi đó phần ảo của số phức z là A. B. 3 3i C. 3D. 3i Câu 6. Cho hàm số y f (x) có đồ thị như hình vẽ bên. Hàm số đã cho nghịch biến trên khoảng nào dưới đây? A. ( ; 1) B. ( 1;0) C. ( 1;1) D. (0;1) Câu 7. Tìm nguyên hàm của hàm số f (x) sin 2x . cos 2x A. sin 2xdx 2cos 2x C B. sin 2xdx C 2 cos 2x C. sin 2xdx C D. sin 2xdx cos 2x C 2 Trang 1
  2. 2 2 2 A. R B. R C. R 1 D. R 3 3 3 Câu 19. Cho hàm số y f (x) có bảng biến thiên như hình vẽ dưới đây. Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là A. 1B. 2C. 3D. 4 Câu 20. Cho a, b, c là các số thực thỏa mãn 0 a 1 và bc 0 . Trong các khẳng định sau: 1 I. loga (bc) loga b loga c II. loga (bc) logbc a 2 b b 4 III. loga 2loga IV. loga b 4loga b c c Có bao nhiêu khẳng định đúng? A. 0B. 1C. 2D. 3 Câu 21. Cho hình chóp S.ABC có ABC là tam giác đều cạnh a. Hai mặt phẳng (SAC), (SAB) cùng vuông góc với đáy và góc tạo bởi SC và đáy bằng 60 . Tính khoảng cách h từ A tới mặt phẳng (SBC) theo a. a 15 a 3 a 15 a 3 A. h B. h C. h D. h 5 3 3 5 4 dx Câu 22. Biết a ln 2 bln 5 c , với a, b, c là các số hữu tỉ. Tính S a 3b c . 3 (x 1)(x 2) A. S 3 B. S 2 C. S 2 D. S 0 Câu 23. Một người gửi tiết kiệm với lãi suất 8,4%/năm và lãi hàng năm được nhập vào vốn. Hỏi ít nhất sau bao nhiêu năm người đó thu được số tiền gấp đôi số tiền ban đầu? A. 8B. 9C. 10D. 11 Câu 24. Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (DBC) và D BC 90 . Khi quay các cạnh của tứ diện xung quanh trục là cạnh AB, có bao nhiêu hình nón được tạo thành? A. 1B. 2C. 3D. 4 Câu 25. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 3;2) , B(3;5; 2) . Phương trình mặt phẳng trung trực của AB có dạng x ay bz c 0 . Khi đó a b c bằng A. 4 B. 3 C. 2D. 2 Câu 26. Cho số phức z thỏa mãn (1 z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là Trang 3
  3. Câu 34. Cho số phức z thỏa mãn z.z 13 . Biết M là điểm biểu diễn số phức z và M thuộc đường thẳng y 3 nằm trong góc phần tư thứ ba trên mặt phẳng Oxy. Khi đó môđun của số phức w z 3 15i bằng bao nhiêu? A. w 5 B. w 3 17 C. w 13 D. w 2 5 Câu 35. Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( ) : x y z 3 0 và mặt cầu (S) : x2 y2 z2 2x 4z 11 0 . Biết mặt cầu (S) cắt mặt phẳng ( ) theo giao tuyến là đường tròn (T). Tính chu vi đường tròn (T). A. 2πB. 4πC. 6πD. π Câu 36. Gọi a là hệ số không chứa x trong khai triển nhị thức Niu tơn n n 1 n 2 2 0 2 n 1 2 n 1 2 n 1 2 2 n 2 * x Cn x Cn x Cn x Cn n x x x x Biết rằng trong khai triển trên tổng hệ số của ba số hạng đầu bằng 161. Tìm a. A. a 11520 B. a 11250 C. a 12150 D. a 10125 Câu 37. Cho lăng trụ tam giác ABC.A B C có BB a , góc giữa đường thẳng BB và mặt phẳng (ABC) bằng 60 , tam giác ABC vuông tại C và B AC 60 . Hình chiếu vuông góc của điểm B lên mặt phẳng (ABC) trùng với trọng tâm G của tam giác ABC. Thể tích của khối tứ diện A .ABC tính theo a bằng 9a3 13a3 A. B. 416 108 9a3 13a3 C. D. 208 416 x 1 khi x 0 2 Câu 38. Cho hàm số f (x) . Tích phân I f (x)dx có giá trị bằng bao nhiêu? 2x e khi x 0 1 7e2 1 11e2 11 3e2 1 9e2 1 A. I B. I C. I D. I 2e2 2e2 e2 2e2 Câu 39. Cho hàm số y f (x) xác định trên ℝ. Đồ thị hàm số y f (x) cắt trục hoành tại ba điểm có hoành độ a, b, c (a b c) như hình bên. Biết f (b) 0 , hỏi phương trình f (x) 0 có nhiều nhất bao nhiêu nghiệm? A. 1B. 2 C. 3D. 4 Trang 5
  4. Câu 48. Cho hình lập phương ABCD.A B C D . Gọi M, N lần lượt là trung điểm các cạnh AD, CD và P là điểm trên cạnh BB sao cho BP 3PB . Mặt phẳng (MNP) chia khối lập phương thành hai khối lần lượt có thể tích V1, V2 . Biết khối có thể tích V1 chứa V điểm A. Tính tỉ số 1 . V2 V 1 V 25 V 1 V 25 A. 1 B. 1 C. 1 D. 1 V2 4 V2 71 V2 8 V2 96 Câu 49. Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(0; 1; 1), B( 1; 3;1) . Giả sử C, D là hai điểm di động thuộc mặt phẳng (P) : 2x y 2z 1 0 sao cho CD = 4 và A, C, D thẳng hàng. Gọi S1, S2 lần lượt là diện tích lớn nhất và nhỏ nhất của tam giác BCD. Khi đó tổng S1 S2 có giá trị bằng bao nhiêu? 34 17 11 37 A. B. C. D. 3 3 3 3 Câu 50. Trên cánh đồng cỏ, có 2 con bò được cột vào hai cây cọc khác nhau. Biết khoảng cách giữa hai cọc là 5m, còn hai sợi dây buộc hai con bò lần lượt có chiều dài là 4m và 3m (không tính phần chiều dài dây buộc bò). Tính diện tích mặt cỏ lớn nhất mà 2 con bò có thể ăn chung (làm tròn đến hàng phần nghìn). A. 6,642m2 B. 6,246m2 C. 4,624m2 D. 4,262m2 Trang 7
  5. xC 3xG xA xB 3 Ta có: yC 3yG yA yB 7 C(3; 7;1) . zC 3zG zA zB 1 Câu 9: Đáp án B Đồ thị (C) có tiệm cận đứng x 3 và tiệm cận ngang y 2 I(3;2) thuộc đường thẳng x y 1 0 . Câu 10: Đáp án D 1 Nếu không phải số nguyên thì a có nghĩa khi a 0 nên 5 3 không có nghĩa. Câu 11: Đáp án D 3 1 3 3 3 1 f (x)dx f (x)dx f (x)dx f (x)dx f (x)dx f (x)dx 4 3 1. 0 0 1 1 0 0 Câu 12: Đáp án D Bước 1: Chọn bạn nam có 17 cách Bước 2: Chọn bạn nữ có 11 cách. Theo quy tắc nhân ta có 17.11 = 187 cách. Câu 13: Đáp án C 2 2 2 2 Ta có: Sxq Rl R. R h .4. 4 3 20 . Câu 14: Đáp án A +) Đồ thị có 2 điểm cực trị nên loại C (hàm trùng phương chỉ có 1 hoặc 3 điểm cực trị). +) Đồ thị có “điểm cuối” đang có hướng đi lên nên a 0 , suy ra loại B. 2 x 0 +) Xét hàm ở phương án A có y 3x 6x 0 thỏa mãn. x 2 (trong khi nếu kiểm tra hàm ở phương án D cho ta 2 điểm cực trị x 0;x 2 (loại)). Câu 15: Đáp án C Điểm thuộc đường thẳng là điểm khi thay đổi tọa độ x, y, z vào phương trình đường thẳng ta được một chuỗi đẳng thức đúng, còn không điểm đó sẽ không thuộc. 2 1 2 1 2 Nhận thấy: , suy ra P( 2;2;1) d . 3 2 1 Câu 16: Đáp án A 1 5 1 1 2 3 1 log2 a b log2 2 2 log2 2 log2 b 5 3 5 log8 a log4 b 5 3 2 a b 2 2 1 1 log a log b 7 1 2 1 4 8 3 7 3 7 log2 a log2 b 7 log ab log 2 ab 2 2 3 2 2 3 3 12 12 9 9 4 4 Suy ra ab 2 ab 2 2 log2 (ab) log2 2 9 . Câu 17: Đáp án D Cách 1: Do z i là nghiệm phức của phương trình z2 az b 0 nên suy ra: Trang 9
  6. a 15 Vậy h d A,(SBC) . 5 Câu 22: Đáp án B   dx 1 ax b Áp dụng công thức giải nhanh: I ln . (ax b)(cx d) ad bc cx d 4 4 dx 1 x 1 1 5 1 1 Ta có: ln ln (ln 5 3ln 2) ln 2 ln 5 a ln 2 bln 5 c . 3 (x 1)(x 2) 3 x 2 3 3 8 3 3 1 Suy ra a 1;b ;c 0 a 3b c 1 1 2 . 3   dx 1 ax b Chú ý: Ta có công thức giải nhanh: I ln (ax b)(cx d) ad bc cx d Câu 23: Đáp án B Gọi số tiền ban đầu là T. Sau n năm, số tiền thu được là: n n Tn T(1 0,084) T.(1,084) . n n Khi đó, Tn 2T T.(1,084) 2T (1,084) 2 n log1,084 2 8,59 . Vì n nên suy ra nmin 9 . Câu 24: Đáp án C Trong 5 cạnh còn lại (không kể cạnh AB) chỉ có 3 cạnh AD, DB, AC khi quay quanh trục AB tạo ra các hình nón. Do đó có 3 hình nón được tạo thành (như hình bên). Chú ý: Do CB  (ADB) CB  AB, do đó CB quay quanh AB chỉ tạo ra hình tròn mà không phải là hình nón. Câu 25: Đáp án A  1  Gọi (P) là mặt phẳng trung trực của AB. Ta có AB (2;8; 4) 2(1;4; 2) n(P) AB (1;4; 2) . 2 Trung điểm của AB là I(2;1;0) . Vậy phương trình mặt phẳng trung trực của AB là a 4 (P) : x 4y 2z 6 0 b 2 a b c 4 . c 6 Câu 26: Đáp án D Gọi M(x; y) là điểm biểu diễn số phức z x yi (x, y ) Khi đó: (1 z)2 (1 x yi)2 (1 x)2 y2 2(1 x)yi là số thực x 1 2(1 x)y 0 . y 0 Trang 11
  7. y 4 x2 y 4 x y 0 y 0 (H1) : và (H2 ) : . x 2 x 0 x 0 x 4 0 4 40 Nên ta có: V V V (4 x2 )dx (4 x)dx Casio . 1 2 2 0 3 1 1 Chú ý: Ở bài toán này V là phần thể tích của khối cầu (sau khi quay đường tròn bán kính R = 2 1 2 4 1 4 16 quanh trục Ox) nên ta có thể tính V bằng công thức thể tích khối cầu như sau: V . .23 . 1 1 2 3 3 Câu 32: Đáp án D a 3 Do BCD là tam giác đều cạnh a R OB . 3 2 2 2 2 a 3 a 6 Ta có: h OA AB OB a . 3 3 a 3 a 6 2 a 2 2 Suy ra: S 2 Rh 2 . . . xq 3 3 3 Câu 33: Đáp án A Phương trình tương đương: 3 2x x2 0 3 x 1 log (3 2x x2 ) log (m 6x) . 2 2 2 2 m 6x 3 2x x m x 8x 3 f (x) Ta đi giải bài toán sau: “Tìm m để đồ thị hàm số f (x) x2 8x 3 (với x ( 3;1) ) cắt đường thẳng y m tại một điểm duy nhất”. Ta có: f (x) 2x 8 0,x ( 3;1) . Suy ra hàm số nghịch biến trên ( 3;1) . m mmax 17 a Dựa vào bảng biến thiên ta có điều kiện: 6 m 18   a b 22 . mmin 5 b Câu 34: Đáp án C Gọi z x yi (x, y ) được biểu diễn bởi điểm M(x; y) . Khi đó ta có: x2 y2 13 x 2 z 2 3i w 5 12i w 13 . y 3;x 0 y 3 Trang 13
  8. 2 2 0 2 0 2 1 0 (x 1)2 9e2 1 I f (x)dx f (x)dx f (x)dx e2xdx (x 1)dx e2x . 2 1 1 0 1 0 2 1 2 0 2e Câu 39: Đáp án D Từ đồ thị hàm số y f (x) ta có bảng biến thiên: Dựa vào bảng biến thiên suy ra đồ thị y f (x) cắt trục hoành (y = 0) nhiều nhất tại 4 điểm phân biệt. Vậy phương trình f (x) 0 có nhiều nhất 4 nghiệm. Câu 40: Đáp án D Ta có thiết diện (T) là tam giác MHK như hình vẽ. Dễ thấy H, K lần lượt là trọng tâm tam giác ABE, ABF (đều là giao 2 đường trung tuyến). AH AK 2 2 2a Khi đó: HK // CD HK= CD . AC AD 3 3 3 Ta có: MH2 AM2 AH2 2AM.AH.cos60 2 2 a 2a a 2a 1 13a 2 2. . . . 2 3 2 3 2 36 a 13 Suy ra MK MH . 6 Xét tam giác cân MHK như hình vẽ. 2 2 2 2 13a a a Ta có: MI MH IH 36 3 2 1 1 a 2a a 2 S MI.HK . . . MHK 2 2 2 3 6 Câu 41: Đáp án D Phương trình tương đương: sin2 x 1 cos 1 cos2 x 1 cos x cos x.(cos x 1) 0 cos x 0 x k x 0;3  3 5  2  x ; ; ;0;2  : có 5 nghiệm. cos x 1 2 2 2  x k2 Câu 42: Đáp án B Trang 15