Đề thi thử chuẩn cấu trúc minh họa kỳ thi Tốt nghiệp THPT môn Toán - Đề số 9 - Năm học 2021-2022 (Có lời giải)

Câu 28: Trong không gian Oxyz  vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ  O và điểm  M (-3;5;-7) ?
A.  (6;-10;14). B.  (-3;5;7). C.  (6;10;14). D.  (3;5;7).
Câu 29: Chọn ngẫu nhiên một số trong 18 số nguyên dương đầu tiên. Xác suất để chọn được số lẻ
bằng
A. 7/8             B. 8/15              C. 7/15              D. 1/2
docx 25 trang vanquan 12/05/2023 3780
Bạn đang xem 20 trang mẫu của tài liệu "Đề thi thử chuẩn cấu trúc minh họa kỳ thi Tốt nghiệp THPT môn Toán - Đề số 9 - Năm học 2021-2022 (Có lời giải)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docxde_thi_thu_chuan_cau_truc_minh_hoa_ky_thi_tot_nghiep_thpt_mo.docx

Nội dung text: Đề thi thử chuẩn cấu trúc minh họa kỳ thi Tốt nghiệp THPT môn Toán - Đề số 9 - Năm học 2021-2022 (Có lời giải)

  1. ĐỀ THI THỬ CHUẨN CẤU KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2021 TRÚC ĐỀ THAM KHẢO Bài thi: TOÁN ĐỀ 9 Thời gian làm bài: 90 phút không kể thời gian phát đề Họ, tên thí sinh: Số báo danh: . Câu 1: Có bao nhiêu cách xếp 4 học sinh thành một hàng dọc? 4 1 A. 4 . B. C4 . C. 4!. D. A4 . Câu 2: Cho cấp số nhân un có u1 2 và u2 6 . Giá trị của u3 bằng A. 18 . B. 18. C. 12. D. 12 . Câu 3: Cho hàm số y f x có bảng biến thiên như sau: Hàm số y f x nghịch biến trên khoảng nào, trong các khoảng dưới đây? A. ; 2 . B. 0; . C. 2;0 . D. 1;3 . Câu 4: Cho hàm số y f x có bảng biến thiên như sau: Hàm số y f x có bao nhiêu điểm cực trị ? A. 3 . B. 2 . C. 1. D. 4 . 3 Câu 5: Cho hàm số f x có đạo hàm f x x x 1 x 2 ,x ¡ . Số điểm cực trị của hàm số đã cho là A. 1. B. 2 . C. 3 . D. 5 . 3x 2 Câu 6: Tiệm cận ngang của đồ thị hàm số y là đường thẳng x 1 A. y 3 . B. y 1. C. x 3 . D. x 1. Câu 7: Đồ thị của hàm số nào sau đây có dạng như đường cong trong hình bên dưới?
  2. 2 4 4 f x dx 1 f t dt 3 I f u du Câu 16: Cho hàm số f x thỏa mãn 1 và 1 . Tính tích phân 2 . A. I 4 . B. I 4 . C. I 2 . D. I 2 . 2 Câu 17: Với m là tham số thực, ta có (2mx 1)dx 4. Khi đó m thuộc tập hợp nào sau đây? 1 A. 3; 1 . B.  1;0 . C. 0;2 . D. 2;6 . Câu 18: Số phức liên hợp của số phức z i 1 3i là A. 3 i . B. 3 i . C. 3 i . D. 3 i . Câu 19: Cho hai số phức z1 5 6i và z2 2 3i . Số phức 3z1 4z2 bằng A. 26 15i . B. 7 30i . C. 23 6i . D. 14 33i . Câu 20: Cho hai số phức z1 1 i và z2 2 i . Trên mặt phẳng Oxy , điểm biểu diễn số phức z1 2z2 có toạ độ là: A. 3;5 . B. 2;5 . C. 5;3 . D. 5;2 . Câu 21: Cho khối chóp S.ABC , có SA vuông góc với đáy, đáy là tam giác vuông tại B , SA 2a, AB 3a, BC 4a . Thể tích khối chóp đã cho bằng A. 8a3 . B. 4a3 . C. 12a3 . D. 24a3 . Câu 22: Cho khối lăng trụ tam giác đều có cạnh đáy bằng a và cạnh bên bằng a 3 . Tính thể tích khối lăng trụ đó theo a. 3a3 3a3 4a3 a3 A. . B. . C. . D. . 2 4 3 4 Câu 23: Diện tích xung quanh của hình trụ có bán kính đáy R , chiều cao h là A. Sxq Rh . B. Sxq 2 Rh . C. Sxq 3 Rh . D. Sxq 4 Rh . Câu 24: Cho tam giác ABC vuông tại A có AB 3 và AC 3. Thể tích V của khối nón nhận được khi quay tam giác ABC quanh cạnh AC là A. V 2 . B. V 5 . C. V 9 . D. V 3 . Câu 25: Trong không gian Oxyz, cho hai điểm A 3;4;2 , B 1; 2;2 và G 1;1;3 là trọng tâm của tam giác ABC . Tọa độ điểm C là? A. C 1;3;2 . B. C 1;1;5 . C. C 0;1;2 . D. C 0;0;2 . Câu 26: Trong không gian Oxyz , cho mặt cầu S : x2 y2 z2 2x 4y 4z 5 0 . Tọa độ tâm I và bán kính R của S là A. I 1; 2; 2 và R 2 . B. I 2; 4; 4 và R 2 . C. I 1; 2; 2 và R 2 D. I 1; 2; 2 và R 14 . Câu 27: Trong không gian Oxyz , điểm nào sau đây thuộc trục Oz ? A. A 1;0;0 . B. B 0;2;0 . C. C 0;0;3 . D. D 1;2;3 .
  3. x 2 t x 1 t x 1 t x 2 t A. y 3 t B. y 2 t C. y 2 t D. y 3 t z 1 5t z 4 5t z 4 5t z 1 5t · Câu 39: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O , cạnh a 3 , BAD 60 , SA vuông góc với mặt phẳng đáy, SA 3a . Khoảng cách giữa hai đường thẳng SO và AD bằng 5a 3 17a 17a 3 5a A. . B. . C. . D. . 5 17 17 5 Câu 40: Cho hàm số y f x liên tục trên ¡ thỏa mãn 2 xf x2 f 2x 2x3 2x, x ¡ . Tính giá trị I f x dx . 1 A. I 25. B. I 21. C. I 27 . D. I 23. 2 Câu 41: Tìm tất cả các giá trị thực của tham số m để phương trình log2 x 2log2 x m 0 có nghiệm x 0;1 . 1 1 A. m 1. B. m . C. m . D. m 1. 4 4 Câu 42: Chọn ngẫu nhiên một số từ tập các số tự nhiên có ba chữ số đôi một khác nhau. Gọi S là tích các chữ số được chọn. Xác suất để S 0 và chia hết cho 6 bằng 23 49 13 55 A. . B. . C. . D. . 54 108 27 108 mx 3m 4 Câu 43: Tìm tất cả các giá trị thực của tham số m sao cho hàm số y nghịch biến trên x m khoảng 2; . m 1 A. . B. 2 m 4 . C. - 1< m £ 2 . D. 1 m 4 . m 4 Câu 44: Tìm tất cả các giá trị thực của tham số m để hàm số y = mx3 - (m2 + 1)x2 + 2x- 3 đạt cực tiểu tại điểm x = 1. 3 A. m = . B. m = 0 . 2 C. m = - 2 . D. Không có giá trị nào của m. Câu 45: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có đường chéo bằng a 2 , cạnh SA có độ dài bằng 2a và vuông góc với mặt phẳng đáy. Tính đường kính mặt cầu ngoại tiếp hình chóp S.ABCD ? 2a 6 a 6 a 6 A. . B. a 6 . C. . D. . 3 12 2 Câu 46: Cho hàm số bậc ba y f x có đồ thị như hình vẽ bên.
  4. Tích tất cả các giá trị nguyên của tham số m để bất phương trình 36.12 f x m2 5m .4 f x f 2 x 4 .36 f x nghiệm đúng với mọi số thực x là A. 12. B. 30. C. 6. D. 24. HẾT BẢNG ĐÁP ÁN 1.C 2.A 3.C 4.A 5.C 6.A 7.A 8.A 9.C 10.B 11.D 12.D 13.C 14.B 15.A 16.A 17.C 18.D 19.B 20.C 21.B 22.B 23.B 24.D 25.B 26.A 27.C 28.A 29.D 30.C 31.D 32.A 33.D 34.D 35.D 36.A 37.B 38.A 39.B 40.B 41.D 42.D 43.C 44.A 45.B 46.C 47.D 48.A 49.B 50.D LỜI GIẢI CHI TIẾT Câu 1: Có bao nhiêu cách xếp 4 học sinh thành một hàng dọc? 4 1 A. 4 . B. C4 . C. 4!. D. A4 . Lời giải Mỗi cách xếp 4 học sinh thành một hàng dọc là một hoán vị của 4 phần tử. Vậy số cách xếp 4 học sinh thành một hàng dọc là: 4!. Câu 2: Cho cấp số nhân un có u1 2 và u2 6 . Giá trị của u3 bằng A. 18 . B. 18. C. 12. D. 12 . Lời giải u Công bội của cấp số nhân đã cho là: q 2 3 . u1 Vậy u3 u2.q 18. Câu 3: Cho hàm số y f x có bảng biến thiên như sau: Hàm số y f x nghịch biến trên khoảng nào, trong các khoảng dưới đây?
  5. A. y x3 x 1. B. y x3 x 1. C. y x3 x 1. D. y x3 x 1. Lời giải Nhìn vào hình vẽ ta thấy đồ thị cắt trục tung tại điểm có tung độ dương nên loại các đáp án y x3 x 1 và y x3 x 1. Ta thấy đồ thị hàm số không có cực trị nên chọn đáp án y x3 x 1 vì hàm số này có y ' 3x2 1 0,x . Câu 8: Số giao điểm của đồ thị của hàm số y x4 4x2 3 với trục hoành là A. 2 . B. 0 . C. 4 . D. 1. Lời giải x2 1 Ta có y x4 4x2 3 0 x 1. 2 x 3(PTVN) Suy ra đồ thị hàm số có 2 giao điểm với trục hoành. 4 Câu 9: Với a là số thực dương tùy ý, log bằng 2 a 1 A. log a . B. 2log a . C. 2 log a . D. log a 1. 2 2 2 2 2 Lời giải 4 Ta có: log log 4 log a 2 log a . 2 a 2 2 2 Câu 10: Đạo hàm của hàm số y 3x là 1 3x A. log a . B. y ' 3x ln 3. C. y ' . D. ln 3. 2 2 ln 3 Lời giải Dùng công thức a x ' a x ln a 3x ' 3x ln 3 . Câu 11: Với a là số thực dương tùy ý, 3 a2 bằng 5 1 2 A. a3 . B. a 3 . C. a 3 . D. a 3 . Lời giải m 2 Với a 0 dùng công thức n am a n 3 a2 a 3 . Câu 12: Nghiệm của phương trình 34x 6 9 là A. x 3. B. x 3. C. x 0 . D. x 2 . Lời giải Ta có: 34x 6 9 34x 6 32 4x 6 2 x 2.
  6. Lời giải Ta có 3z1 4z2 3 5 6i 4 2 3i 7 30i . Câu 20: Cho hai số phức z1 1 i và z2 2 i . Trên mặt phẳng Oxy , điểm biểu diễn số phức z1 2z2 có toạ độ là: A. 3;5 . B. 2;5 . C. 5;3 . D. 5;2 . Lời giải Ta có số phức z1 2z2 5 3i có điểm biểu diễn là 5;3 . Câu 21: Cho khối chóp S.ABC , có SA vuông góc với đáy, đáy là tam giác vuông tại B , SA 2a, AB 3a, BC 4a . Thể tích khối chóp đã cho bằng A. 8a3 . B. 4a3 . C. 12a3 . D. 24a3 . Lời giải 1 1 1 1 3 VS.ABC .SABC .SA . .AB.BC .SA .3a.4a.2a 4a . 3 3 2 6 Câu 22: Cho khối lăng trụ tam giác đều có cạnh đáy bằng a và cạnh bên bằng a 3 . Tính thể tích khối lăng trụ đó theo a. 3a3 3a3 4a3 a3 A. . B. . C. . D. . 2 4 3 4 Lời giải
  7. Vậy tâm mặt cầu là I 1; 2; 2 và bán kính mặt cầu R 1 4 4 5 2 . Câu 27: Trong không gian Oxyz , điểm nào sau đây thuộc trục Oz ? A. A 1;0;0 . B. B 0;2;0 . C. C 0;0;3 . D. D 1;2;3 . Lời giải Điểm nằm trên trục Oz thì hoành độ và và tung độ bằng 0. Câu 28: Trong không gian Oxyz, vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O và điểm M 3;5; 7 ? A. 6; 10;14 . B. 3;5;7 . C. 6;10;14 . D. 3;5;7 . Lời giải ChọnA Đường thẳng đi qua gốc tọa độ O và điểm M 3;5; 7   nhận OM 3;5; 7 u 2OM 6; 10;14 là một vectơ chỉ phương của đường thẳng Câu 29: Chọn ngẫu nhiên một số trong 18 số nguyên dương đầu tiên. Xác suất để chọn được số lẻ bằng 7 8 7 1 A. . B. . C. . D. . 8 15 15 2 Lời giải ChọnD Số phần tử của không gian mẫu: n  18 Gọi A là biến cố chọn được số lẻ. A 1;3;5;7;9;11;13;15;17 n A 9 . n A 9 1 Vậy xác suất là p A . n  18 2 Câu 30: Hàm số nào dưới đây nghịch biến trên ¡ ? x 1 A. y . B. y 2x2 2021x . C. y 6x3 2x2 x . D. y 2x4 5x2 7 . x 2 Lời giải ChọnC Xét các đáp án ta có Đáp án A tập xác định D ¡ \ 2 nên loại Đáp án B đồ thị là Parabol nên loại Đáp án C có TXĐ: ¡ y ' 18x2 4x 1 0,x ¡ nên hàm số nghịch biến trên ¡ Đáp án D hàm số có 3 cực trị nên không thỏa mãn. Câu 31: Giá trị nhỏ nhất của hàm số f x x4 2x2 trên đoạn  2;2. A. 1. B. 8 . C. 1. D. 8 . Lời giải Xét hàm số f x x4 2x2 trên đoạn  2;2.
  8. Ta có B B a CC a AC a 3 Góc giữa C A và mp ABC bằng góc đường thẳng C A và CA bằng góc C· AC C C a 3 tan C· AC C· AC 300 AC a 3 3 Câu 36: Cho hình chóp đều S.ABCD có cạnh đáy bằng a và cạnh bên tạo với đáy một góc 60 . Khoảng cách từ S đến mặt phẳng ABCD bằng a 6 a 3 a 3 a 2 A. . B. . C. . D. . 2 2 3 3 Lời giải Gọi O AC  BD SO  ABCD SO a a 6 S· CO 60 tan 60 SO OC 3 . 3 OC 2 2 Câu 37: Trong không gian với hệ tọa độ Oxyz , mặt cầu có tâm I 1; 2; 0 và đi qua điểm M 2;6;0 có phương trình là: A. x 1 2 y 2 2 z2 100 . B. x 1 2 y 2 2 z2 25 . C. x 1 2 y 2 2 z2 25 . D. x 1 2 y 2 2 z2 100 . Lời giải Ta có bán kính R IM 32 42 0 5. Vậy phương trình mặt cầu tâm I 1; 2; 0 , bán kính R 5 là x 1 2 y 2 2 z2 25 .
  9. 1 1 1 Do tam giác SAN vuông tại A có AH là đường cao nên AH 2 AS 2 AN 2 3a 3a. AS.AN 3 17a AH 4 5 . AS 2 AN 2 9a2 17 9a2 16 3 17a Từ 1 , 4 và 5 suy ra d SO, AD . 17 Câu 40: Cho hàm số y f x liên tục trên ¡ thỏa mãn 2 xf x2 f 2x 2x3 2x, x ¡ . Tính giá trị I f x dx . 1 A. I 25. B. I 21. C. I 27 . D. I 23. Lời giải 2 2 2 3 2 3 xf x f 2x 2x 2x xf x f 2x dx 2x 2x dx 1 1 2 2 x4 2 2 2 21 2 2 2 xf x dx f 2x dx x xf x dx f 2x dx . 1 1 2 1 1 1 2 2 2 + Tính xf x dx : 1 du Đặt u x2 du 2xdx xdx . 2 x 1 u 1; x 2 u 4 . 2 4 f u 1 4 2 Suy ra xf x dx du f x dx . 1 1 2 2 1 2 + Tính f 2x dx : 1 dt Đặt t 2x dt 2dx dx . 2 x 1 t 2; x 2 t 4 . 2 4 f t 1 4 Suy ra f 2x dx dt f x dx . 1 2 2 2 2 Thay vào ta được 1 4 1 4 21 1 2 1 4 1 4 21 f x dx f x dx f x dx f x dx f x dx 2 1 2 2 2 2 1 2 2 2 2 2 1 2 21 2 f x dx f x dx 21. 2 1 2 1