Đề ôn thi Tốt nghiệp THPT môn Toán (Bám sát đề minh họa) - Đề 10 - Năm học 2022-2023 (Có đáp án)
Câu 37. Một hộp đựng 10 chiếc thẻ được đánh số từ 0 đến 9 . Lấy ngẫu nhiên ra 3 chiếc thẻ, tính xác suất để 3 chữ số trên 3 chiếc thẻ được lấy ra có thể ghép thành một số chia hết cho 5.
A. 8/15 B. 7/15 C. 2/5 D. 3/5
Câu 40. Cho hàm số y=f(x) = x(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7). Hỏi đồ thị hàm số y=f'(x) cắt trục hoành tại tất cả bao nhiêu điểm phân biệt?
A. .1 B. 6. C. 0. D. 7.
A. 8/15 B. 7/15 C. 2/5 D. 3/5
Câu 40. Cho hàm số y=f(x) = x(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7). Hỏi đồ thị hàm số y=f'(x) cắt trục hoành tại tất cả bao nhiêu điểm phân biệt?
A. .1 B. 6. C. 0. D. 7.
Bạn đang xem 20 trang mẫu của tài liệu "Đề ôn thi Tốt nghiệp THPT môn Toán (Bám sát đề minh họa) - Đề 10 - Năm học 2022-2023 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_on_thi_tot_nghiep_thpt_mon_toan_bam_sat_de_minh_hoa_de_10.docx
Nội dung text: Đề ôn thi Tốt nghiệp THPT môn Toán (Bám sát đề minh họa) - Đề 10 - Năm học 2022-2023 (Có đáp án)
- ĐỀ 10 ĐỀ ÔN THI TỐT NGHIỆP THPT NĂM 2022 BÁM SÁT ĐỀ MINH HỌA MÔN TOÁN Thời gian: 90 phút Câu 1. Cho số phức z 2 i . Tính z . A. z 5 B. z 5 C. z 2 D. z 3 Câu 2. Trong không gian với hệ tọa độ Oxyz , cho mặt cầu (S) có phương trình x2 y2 z2 4x 2y 4 0 .Tính bán kính R của (S). A. 1. B. 9 . C. 2 . D. 3 . Câu 3. Điểm nào dưới đây thuộc đồ thị của hàm số y x3 2x 1 A. Điểm M 0; 1 . B. Điểm N 1; 4 . C. Điểm P 1;2 . D. Điểm Q 1;4 . Câu 4. Cho mặt cầu có diện tích bằng 16 a2 . Khi đó, bán kính mặt cầu bằng a 2 A. 2 2a B. 2a C. 2a D. 2 Câu 5. Trong các khẳng định sau, khẳng định nào sai? e2x A. 2x dx 2x ln 2 C . B. e2xdx C . 2 1 1 C. cos 2xdx sin 2x C . D. dx ln x 1 C x 1 . 2 x 1 Câu 6. Cho hàm f x có bảng biến thiên như sau: Giá trị cực tiểu của hàm số đã cho bằng A. 3 . B. 5 . C. 0 . D. 2 . Câu 7. Tập nghiệm của bất phương trình log0,5 x 1 1 là 3 3 3 3 A. ; . B. 1; . C. ; . D. 1; . 2 2 2 2 Câu 8. Cho hình chóp S.ABC có đáy là tam giác đều cạnh a và chiều cao 4a . Tính thể tích của hình chóp đã cho. 2a3 3 4a3 3 a3 3 a3 3 A. V .B. V .C. V .D. V . 3 3 3 4 4 Câu 9. Tập xác định của hàm số y x2 4 là A. ¡ . B. 2;2 . C. ¡ \ 2 . D. ¡ \ 4 .
- A. y x4 2x2 . B. y x3 3x . C. y x3 3x . D. y x4 2x2 . x 1 y 1 z 2 Câu 19. Trong không gian Oxyz , điểm nào dưới đây thuộc đường thẳng ? 2 1 3 A. Q 2;1; 3 .B. P 2; 1;3 . C. M 1;1; 2 .D. N 1; 1;2 . Câu 20. Với k và n là hai số nguyên dương k n , công thức nào sao đây đúng? n! k! n! n! A. Ak . B. Ak . C. Ak . D. Ak . n k!(n k)! n (k n)! n k! n (n k)! Câu 21. Diện tích đáy của khối lăng trụ có thể tích V và có chiều cao h là 3V 3h V h A. B . B. B . C. B . D. B . h V h V Câu 22. Cho f x 2.3log81 x 3 . Tính f 1 1 1 A. f 1 . B. f 1 . C. f 1 1. D. f 1 1. 2 2 Câu 23. Cho hàm số y f x có bảng biến thiên như sau: Hàm số y f x nghịch biến trên khoảng nào dưới đây? A. 0; B. ; 2 C. 0;2 D. 2;0 Câu 24. Cho hình trụ có diện tích xung quanh Sxq và độ dài đường sinh 3l . Bán kính đáy r của hình trụ đã cho được tính theo công thức nào sau đây? 6S S S 2 l A. r xq . B. r xq . C. r xq . D. r . l 2 l 6 l Sxq Câu 25. Cho f (x), g(x) là các hàm số liên tục trên đoạn 2;6 và thỏa mãn 3 6 6 f (x)dx 3; f (x)dx 7; g(x)dx 5 . Hãy tìm mệnh đề KHÔNG đúng. 2 3 3
- Câu 32. Cho hình hộp chữ nhật ABCD.A'B'C 'D' có AB a , AD 2 2a , AA' 3a . Góc giữa đường thẳng A'C và mặt phẳng ABCD bằng A. 45 . B. 90 . C. 60 . D. 30 . 2 2 2 Câu 33. Cho f (x)dx 2 và g(x)dx 1, khi đó x 2 f (x) 3g(x)dx bằng 1 1 1 5 7 17 11 A. B. C. D. 2 2 2 2 Câu 34. Trong không gian Oxyz , mặt phẳng đi qua hai điểm A 0;1;0 , B 2;0;1 và vuông góc với mặt phẳng P : x y 5 0 có phương trình là A. x y z 1 0 . B. x 2y 6z 2 0 . C. x 2y 6z 2 0 . D. x y z 1 0 . Câu 35.Số phức z thỏa mãn: z 2 3i z 1 9i là A. 2 i .B. 2 i .C. 3 i .D. 2 i Câu 36. Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; AB AD 2a; DC a . Điểm I là trung điểm đoạn AD, hai mặt phẳng SIB và SIC cùng vuông góc với mặt phẳng ABCD . Mặt phẳng SBC tạo với mặt phẳng ABCD một góc 60 . Tính khoảng cách từ D đến SBC theo a . a 15 9a 15 2a 15 9a 15 A. . B. . C. . D. . 5 10 5 20 Câu 37. Một hộp đựng 10 chiếc thẻ được đánh số từ 0 đến 9 . Lấy ngẫu nhiên ra 3 chiếc thẻ, tính xác suất để 3 chữ số trên 3 chiếc thẻ được lấy ra có thể ghép thành một số chia hết cho 5 . 8 7 2 3 A. .B. .C. . D. . 15 15 5 5 Câu 38. Trong không gian với hệ tọa độ Oxyz , cho P : 2x 5y z 1 0 và A 1;2; 1 . Đường thẳng qua A và vuông góc với P có phương trình là x 2 t x 3 2t x 1 2t x 3 2t A. y 5 2t .B. y 3 5t .C. y 2 5t .D. y 3 5t . z 1 t z 1 t z 1 t z t 2x 1 x Câu 39. Có bao nhiêu số nguyên x 2022;2022 thỏa mãn 3 7.3 2 log3 2x 1 2 0 ? A. 2022 .B. 2021.C. 2018 .D. 2017 . Câu 40. Cho hàm số f x x x 1 x 2 x 3 x 4 x 5 x 6 x 7 . Hỏi đồ thị hàm số y f x cắt trục hoành tại tất cả bao nhiêu điểm phân biệt? A. 1. B. 6 . C. 0 . D. 7 . 1 1 2 Câu 41. Cho hàm số y f x biết f 0 và f x xex với mọi x ¡ . Khi đó xf x dx bằng 2 0
- Câu 47. Cho hình nón tròn xoay có chiều cao bằng 2a , bán kính đáy bằng 3a . Một thiết diện đi qua đỉnh của hình 3a nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng . Diện tích của thiết diện đó bằng 2 2a2 3 12a2 24a2 3 A. . B. 12a2 3 . C. . D. . 7 7 7 Câu 48. Có bao nhiêu cặp số nguyên dương x; y thỏa mãn điều kiện x 2020 và y 3 3 9 2y x log3 x 1 2 ? A. 4 . B. 2 . C. 3772 . D. 3774 . Câu 49. Trong không gian với hệ tọa độ Oxyz , gọi điểm M a;b;c (với a , b , c là các phân số tối giản) thuộc mặt cầu S : x2 y2 z2 2x 4y 4z 7 0 sao cho biểu thức T 2a 3b 6c đạt giá trị lớn nhất. Khi đó giá trị biểu thức P 2a b c bằng 12 51 A. . B. 8 . C. 6 . D. . 7 7 Câu 50. Cho hàm số y = f (x) có đạo hàm f ¢(x)= x2 (x2 - 3x + 2)(x2 - x), với mọi x Î ¡ . Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y f x2 16x 2m có 5 điểm cực trị? A. 30 . B. 31. C. 32 . D. 33 . LỜI GIẢI CHI TIẾT Câu 1. Cho số phức z 2 i . Tính z . A. z 5 B. z 5 C. z 2 D. z 3 Lời giải Chọn A Ta có z 22 1 5 . Câu 2. Trong không gian với hệ tọa độ Oxyz , cho mặt cầu (S) có phương trình x2 y2 z2 4x 2y 4 0 .Tính bán kính R của (S). A. 1. B. 9 . C. 2 . D. 3 . Lời giải ChọnD. Giả sử phương trình mặt cầu (S) : x2 y2 z2 2ax 2by 2cz d 0 (a2 b2 c2 d 0) Ta có: a 2,b 1,c 0,d 4 Bán kính R a2 b2 c2 d 3. Câu 3. Điểm nào dưới đây thuộc đồ thị của hàm số y x3 2x 1 A. Điểm M 0; 1 . B. Điểm N 1; 4 . C. Điểm P 1;2 . D. Điểm Q 1;4 . Lời giải Chọn C Câu 4. Cho mặt cầu có diện tích bằng 16 a2 . Khi đó, bán kính mặt cầu bằng
- Lời giải Chọn C a2 3 Do đáy là tam giác đều nên S . ABC 4 1 1 a2 3 a3 3 Mà V S .h . .4a . 3 ABC 3 4 3 4 Câu 9. Tập xác định của hàm số y x2 4 là A. ¡ . B. 2;2 . C. ¡ \ 2 . D. ¡ \ 4 . Lời giải Chọn C Câu 10. Giải phương trình log4 (x 1) 3. A. x 65 B. x 80 C. x 82 D. x 63 Lời giải Chọn A ĐK: x 1 0 x 1 3 Phương trình log4 x 1 3 x 1 4 x 65 . 1 3 3 Câu 11. Cho f (x) dx 1; f (x) dx 5. Tính f (x) dx 0 0 1 A. 1. B. 4. C. 6. D. 5. Lời giải 3 1 3 3 3 1 Ta có f (x) dx = f (x) dx + f (x) dx f (x) dx = f (x) dx f (x) dx = 5+ 1= 6 0 0 1 1 0 0 3 Vậy f (x) dx = 6 1 Câu 12. Cho số phức z 3 2i , số phức 1 i z bằng A. 1 5i B. 5 i .C. 1 5i .D. 5 i . Lời giải ChọnD. Vì z 3 2i nên ta có 1 i z (1 i)( 3 2i) 5 i Câu 13. Trong không gian Oxyz , cho mặt phẳng P : 4x 3y z 1 0 . Véctơ nào sau đây là một véctơ pháp tuyến của P A. n4 3;1; 1 . B. n3 4;3;1 . C. n2 4; 1;1 . D. n1 4;3; 1 . Lời giải Chọn B P : 4x 3y z 1 0 . Véctơ n3 4;3;1 là một véctơ pháp tuyến của P .
- A. y x4 2x2 . B. y x3 3x . C. y x3 3x . D. y x4 2x2 . Lời giải Chọn C Đây là đồ thị của hàm số bậc ba với hệ số a 0 nên chọnC. x 1 y 1 z 2 Câu 19. Trong không gian Oxyz , điểm nào dưới đây thuộc đường thẳng ? 2 1 3 A. Q 2;1; 3 .B. P 2; 1;3 . C. M 1;1; 2 .D. N 1; 1;2 . Lời giải 1 1 1 1 2 2 Xét điểm N 1; 1;2 ta có nên điểm N 1; 1; 2 thuộc đường thẳng đã cho. 2 1 3 Câu 20. Với k và n là hai số nguyên dương k n , công thức nào sao đây đúng? n! k! n! n! A. Ak . B. Ak . C. Ak . D. Ak . n k!(n k)! n (k n)! n k! n (n k)! Lời giải Chọn D n! Ak n (n k)! Câu 21. Diện tích đáy của khối lăng trụ có thể tích V và có chiều cao h là 3V 3h V h A. B . B. B . C. B . D. B . h V h V Lời giải Chọn C V Diện tích đáy của khối lăng trụ có thể tích V và có chiều cao h là: B . h Câu 22. Cho f x 2.3log81 x 3 . Tính f 1 1 1 A. f 1 . B. f 1 . C. f 1 1. D. f 1 1. 2 2 Lời giải Chọn A TXĐ: D 0; .
- 1 1 A. 2ex tan x C B. 2ex tan x C C. 2ex C D. 2ex C cos x cos x Lời giải x x e x 1 Ta có: y e 2 2 2e 2 cos x cos x x 1 x ydx 2e 2 dx 2e tan x C . cos x Câu 28. Cho hàm số y f x có đồ thị như hình vẽ. Hàm số đã cho đạt cực đại tại A. x 4 . B. x 0 . C. x 1 . D. x 1. Lời giải Chọn C Câu 29. Cho hàm số y f x liên tục trên đoạn 1;1 và có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn 1;1 . Giá trị của M m bằng A. 0 . B. 1. C. 2 . D. 3 . Lời giải Từ đồ thị ta thấy M 1,m 0 nên M m 1. Câu 30. Cho hàm số y f x x3 3x . Hỏi khẳng định nào sau đây là khẳng định đúng ? A. Hàm số f x đồng biến trên ¡ . B. Hàm số f x nghịch biến trên 1;0 . C. Hàm số f x nghịch biến trên ;0 . D. Hàm số f x không đổi trên ¡ . Lời giải Chọn đáp án A.
- 2 2 2 2 3 5 Ta có x 2 f (x) 3g(x)dx xdx 2 f (x)dx 3 g(x)dx 4 3 1 1 1 1 2 2 Câu 34. Trong không gian Oxyz , mặt phẳng đi qua hai điểm A 0;1;0 , B 2;0;1 và vuông góc với mặt phẳng P : x y 5 0 có phương trình là A. x y z 1 0 . B. x 2y 6z 2 0 . C. x 2y 6z 2 0 . D. x y z 1 0 . Câu 35.Số phức z thỏa mãn: z 2 3i z 1 9i là A. 2 i .B. 2 i .C. 3 i .D. 2 i Lời giải Gọi z a bi với a,b ¡ ; i2 1 z a bi z 2 3i z 1 9i a bi 2 3i a bi 1 9i a bi 2a 2bi 3ai 3b 1 9i a 3b 1 a 2 a 3b 3a 3b i 1 9i z 2 i 3a 3b 9 b 1 Vậy chọn đáp án D. Câu 36. Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D; AB AD 2a; DC a . Điểm I là trung điểm đoạn AD, hai mặt phẳng SIB và SIC cùng vuông góc với mặt phẳng ABCD . Mặt phẳng SBC tạo với mặt phẳng ABCD một góc 60 . Tính khoảng cách từ D đến SBC theo a . a 15 9a 15 2a 15 9a 15 A. . B. . C. . D. . 5 10 5 20 Lời giải Chọn A S H E A B I M K D C Theo đề ta có SI ABCD . Gọi K là hình chiếu vuông góc của I trên BC . Suy ra: Góc giữa hai mặt phẳng ·SBC , ABCD S· KI 60 Gọi E là trung điểm của AB, M IK DE. Do BCDE là hình bình hành nên DE // SBC d D, SBC d DE, SBC d M , SBC