Đề khảo sát chất lượng Toán Lớp 12 - Mã đề 123 - Năm học 2023-2024 - Sở GD&ĐT Hải Phòng (Có đáp án)

Câu 29: Một hộp chứa 11 quả cầu gồm 5 quả cầu màu xanh và 6 quả cầu màu đỏ. Lấy ngẫu nhiên đồng
thời 2 quả cầu từ hộp đó. Tính xác suất để lấy được 2 quả cầu khác màu.
A. 5/22              B. 8/11                   C. 5/11                   D. 6/11
Câu 43:
Xếp 10 quyển sách tham khảo khác nhau gồm: 1 quyển sách Văn, 3 quyển sách tiếng Anh và 6
quyển sách Toán (trong đó có hai quyển Toán T1 và Toán T2) thành một hàng ngang trên giá
sách. Tính xác suất để mỗi quyển sách Tiếng Anh đều được xếp ở giữa hai quyển sách Toán,
đồng thời hai quyển Toán T1 và Toán T2 luôn xếp cạnh nhau.
A. 1/300           B. 1/210                C. 1/420                    D. 1/600
pdf 7 trang vanquan 18/05/2023 8220
Bạn đang xem tài liệu "Đề khảo sát chất lượng Toán Lớp 12 - Mã đề 123 - Năm học 2023-2024 - Sở GD&ĐT Hải Phòng (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdfde_khao_sat_chat_luong_toan_lop_12_ma_de_123_nam_hoc_2023_20.pdf

Nội dung text: Đề khảo sát chất lượng Toán Lớp 12 - Mã đề 123 - Năm học 2023-2024 - Sở GD&ĐT Hải Phòng (Có đáp án)

  1. SỞ GD & ĐT HẢI PHÒNG ĐỀ KHẢO SÁT CHẤT LƯỢNG LỚP 12 NĂM 2023 * Môn: TOÁN LIÊN TRƯỜNG THPT Thời gian làm bài 90 phút; 50 câu trắc nghiệm (Đề gồm 06 trang) Mã đề 123 Câu 1: Cho hình chóp S. ABC có đáy ABC là tam giác vuông tại A ; AB= 3 a , AC= a và đường cao SA= 2 a . Thể tích khối chóp S. ABC bằng A. 2a3 . B. a3 C. 3a3 . D. a3 . . 3 2 Câu 2: Trong không gian Oxyz , mặt cầu (Sx ) : (− 2)22 ++ ( y 1) +−( z 4) = 16 có bán kính là A. R = 2 . B. R =16. C. R = 4 . D. R = 8 . Câu 3: Đồ thị hàm số yx= 3 ++ x3 đi qua điểm nào trong các điểm sau đây? A. M (−1; 3 ) . B. P(−1; 0 ) . C. Q(−−1; 1) . D. N (−1;1) . Câu 4: Tìm tập nghiệm S của bất phương trình log2 ( x −> 1) 4 . A. S =( −∞;17) . B. S = (1;17 ) . C. S =(17; +∞) . D. S = (0;17) . Câu 5: Cho cấp số nhân (un ) có số hạng đầu u1 = 3 và công bội q = 2 . Số hạng thứ năm của cấp số nhân (un ) là A. u5 = 96 . B. u5 = 32 . C. u5 = 48 . D. u5 = 24 . Câu 6: Nghiệm của phương trình 55xx+−31= là A. x = −1. B. x = −2. C. x =1. D. x = 2 . Câu 7:GH àm số fx( ) =−++25 x42 x có bao nhiêu điểm cực trị? A. 1. B. 2 . C. 3. D. 0 . Câu 8: Có bao nhiêu cách chọn 5 học sinh từ một nhóm gồm 10 học sinh để tham gia đội văn nghệ? 10 5 5 5 A. 5 . B. A10 . C. 10 . D. C10 . Câu 9: 41x + Phương trình đường tiệm cận ngang của đồ thị hàm số y = là x + 3 A. x = 4 . B. y = −3 . C. y = 4 . D. x = −3. Câu 10: Cho hàm số y= fx( ) có bảng biến thiên như hình vẽ: x −∞ −1 0 +∞ y′ − 0 + 0 − y +∞ 2 1 −∞ Hàm số y= fx( ) đồng biến trên khoảng A. (−1; +∞) . B. (1; 2 ) . C. (−1; 0 ) . D. (−∞;1 − ) . Câu 11: Hàm số yx=−−4222 x nghịch biến trên khoảng nào sau đây? Mã đề 123 - Trang 1/6 -
  2. A. maxfx( ) = f( 1). B. min fx( ) = f( −1) . (0;+∞) (−∞;1 − ) C. maxfx( ) = f( 0). D. minfx( ) = f( 0) . (−1;1] (−1; +∞) Câu 23: 1 Tìm tất cả các giá trị thực của tham số m để hàm số y=−−++− x32 mx(32 m) x 2 nghịch biến 3 trên khoảng (−∞; +∞) . A. m ≥−1 B. −21 ≤m ≤− . C. −21 −1  .  . m ≤−2 m <−2 2 Câu 24: Bất phương trình: 84xx( +1) < x −1 có tập nghiệm S= ( ab; ) . Tính giá trị Ta= + 3 b. A. T = 7 . B. T = −7 . C. T = 5 . D. T = −5 . Câu 25: Cho hình chóp S. ABC có đáy ABC là tam giác đều cạnh bằng a 3 , cạnh bên SA vuông góc với mặt phẳng đáy. Tính khoảng cách từ điểm B đến mặt phẳng(SAC) . A. a 6 . B. 2a 21 C. a 3 D. 3a . . . 7 2 2 Câu 26: Cho hàm số y= fx() có đồ thị như hình vẽ: Số nghiệm thực của phương trình 2fx ()−= 3 0 là A. 3. B. 1. C. 0 . D. 2 . Câu 27: Cho hình chóp S. ABC , có SA vuông góc mặt phẳng ()ABC ; tam giác ABC vuông tại B . Biết SA= 2 a , AB= a , BC= a 3 . Tính diện tích của mặt cầu ngoại tiếp hình chóp. A. 8π a2 . B. 32π a2 . C. 16π a2 . D. 4π a2 . Câu 28: Tính độ dài đoạn thẳng nối hai điểm cực trị của đồ thị hàm số yx=−+3231 x . A. 6 . B. 5. C. 5 . D. 25. Câu 29: Một hộp chứa 11 quả cầu gồm 5 quả cầu màu xanh và 6 quả cầu màu đỏ. Lấy ngẫu nhiên đồng thời 2 quả cầu từ hộp đó. Tính xác suất để lấy được 2 quả cầu khác màu. A. 5 B. 8 C. 5 D. 6 . . . . 22 11 11 11 Câu 30: Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc với mặt phẳng đáy và SA= 2 a . Tính số đo của góc giữa đường thẳng SC và mặt phẳng đáy. A. 90° . B. 45°. C. 30° . D. 60°. Câu 31: Trong không gian Oxyz , cho hai điểm A(4;− 2;1), B(0;−− 2; 1) . Viết phương trình mặt cầu đường kính AB . Mã đề 123 - Trang 3/6 -
  3. Câu 39: 2025x Cho hàm số fx( ) = , x∈ và hai số ab, thỏa mãn ab+=3 . Tính fa( ) +− fb( 2) . 45+ 2025x A. −1. B. 2 . C. −2 . D. 1. Câu 40: Có bao nhiêu giá trị nguyên của tham số m để bất phương trình 1+ logx22 +≥ 1 logmx + 2 x + m có nghiệm đúng với mọi số thực x ? 33( ) ( ) A. 6 . B. 2 . C. 1. D. 4 . Câu 41: Cho hàm số y=− x322331 mx +( m −) x −− m 3 m và điểm I (2;− 2) . Gọi A , B là hai điểm cực trị của đồ thị hàm số. Tính tổng tất cả các giá trị thực của tham số m để ba điểm I , A , B tạo thành tam giác nội tiếp đường tròn có bán kính bằng 5 . A. 2 B. 20 C. 14 D. 4 − . . . . 17 17 17 17 Câu 42: Cho hình lăng trụ đứng ABC. A′′′ B C có đáy ABC là tam giác vuông tại B , AB= a 3 , BC= 2 a , AA′ = a 2 . Gọi M là trung điểm của BC . Tính khoảng cách giữa hai đường thẳng AM và BC′ . A. a 30 B. 2a . C. a 2 . D. a 10 . . 10 10 Câu 43: Xếp 10 quyển sách tham khảo khác nhau gồm: 1 quyển sách Văn, 3 quyển sách tiếng Anh và 6 quyển sách Toán (trong đó có hai quyển Toán T1 và Toán T2) thành một hàng ngang trên giá sách. Tính xác suất để mỗi quyển sách Tiếng Anh đều được xếp ở giữa hai quyển sách Toán, đồng thời hai quyển Toán T1 và Toán T2 luôn xếp cạnh nhau. A. 1 B. 1 C. 1 D. 1 . . . . 300 210 420 600 Câu 44: Cho hình lăng trụ ABC. A′′′ B C có AA′ = a , đáy ABC là tam giác đều, hình chiếu vuông góc của điểm A trên mặt phẳng ( ABC′′′) trùng với trọng tâm của tam giác ABC′′′. Mặt phẳng (BB′′ C C) tạo với mặt phẳng ( ABC′′′) góc 600 . Tính thể tích V của khối lăng trụ ABC. A′′′ B C . A. a3 B. 27a3 C. 3a3 D. 9a3 V = . V = . V = . V = . 8 32 32 32 Câu 45: Cho hình trụ có hai đáy là hai hình tròn (OR; ) và (OR′; ) ; AB là một dây cung của đường tròn (OR; ) sao cho tam giác O′ AB đều và mặt phẳng (O′ AB) tạo với mặt phẳng chứa đường tròn (OR; ) một góc 60°. Tính thể tích V của khối trụ đã cho. A. π 5R3 B. 35π R3 C. 37π R3 D. π 7R3 V = . V = . V = . V = . 5 5 7 7 Câu 46: Cho hàm số đa thức y= fx( ) có f (01) = − và đồ thị hàm số fx′( ) như hình vẽ. Số điểm cực trị của hàm số y= f( fx( ) − 3 ) là Mã đề 123 - Trang 5/6 -
  4. ĐÁP ÁN ĐỀ TOÁN LIÊN TRƯỜNG MÃ ĐỀ MÃ ĐỀ MÃ ĐỀ MÃ ĐỀ MÃ ĐỀ MÃ ĐỀ MÃ ĐỀ MÃ ĐỀ CÂU 123 234 345 456 567 678 789 890 1 D D A A D C A D 2 C B B A B D C C 3 D B B B B D B B 4 C A C B B C B B 5 C C D D D B B A 6 A C A B D A C B 7 C A D C A A A B 8 D C D A B B A C 9 C D B D B A C A 10 C C B A B D A B 11 A B C A B A A C 12 B D B D A B D B 13 A C D D C C D B 14 B D C D D C A D 15 A C B B B D D B 16 A A D C C A D C 17 B A D D A C D D 18 B A D D B A C B 19 B B C C B B B D 20 B A C A A A A B 21 D D B C C D C B 22 A D C C D A D D 23 B A C D C A C D 24 D D B A B A D C 25 D B B B D D B A 26 B B D B D D B D 27 A B B B A A D A 28 D C D C D B D C 29 D C B C D A A C 30 B D D D D D C C 31 A B B B D C C A 32 D A C C D D B B 33 C A C D B D B B 34 C D D C C D B C 35 D B A D C D A A 36 A D D C D D C B 37 C C B C C A D C 38 D C C A B D A C 39 D B C A B B A B 40 C B D D A A C D 41 B B A B B C B D 42 A B D A B C B D 43 B C B C D C D A 44 D A C C C D C D 45 C A C B B A D D 46 A A B A D A C A 47 C C A D D C B A 48 B A D B B B D C 49 A C A A B B D B 50 A D D D C A C D