Đề khảo sát chất lượng thi Tốt nghiệp THPT lần 1 môn Toán - Năm học 2021-2022 - Trường THPT chuyên Lam Sơn (Có đáp án)
Câu 31: Ông An gửi 200 triệu đồng vào ngân hàng theo hình thức lãi kép theo kì hạn năm, với lãi suất là 6,5% một năm và lãi suất không đổi trong thời gian gửi. Sau 6 năm, số tiền lãi ( làm tròn đến hàng triệu ) của ông làA. 92 triệu. B. 96 triệu. C. 78 triệu. D. 69 triệu.
Bạn đang xem 20 trang mẫu của tài liệu "Đề khảo sát chất lượng thi Tốt nghiệp THPT lần 1 môn Toán - Năm học 2021-2022 - Trường THPT chuyên Lam Sơn (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_khao_sat_chat_luong_thi_tot_nghiep_thpt_lan_1_mon_toan_na.pdf
Nội dung text: Đề khảo sát chất lượng thi Tốt nghiệp THPT lần 1 môn Toán - Năm học 2021-2022 - Trường THPT chuyên Lam Sơn (Có đáp án)
- SỞ GD&ĐT THANH HÓA KÌ THI KSCL CÁC MÔN THI TN THPT - LẦN 1 TRƯỜNG THPT CHUYÊN LAM SƠN MÔN TOÁN ĐỀ CHÍNH THỨC Thời gian làm bài: 90 phút (không kể thời gian giao đề) Câu 1: Cho khối lăng trụ tam giác A B C. A B C có thể tích là V , thể tích của khối chóp A. B C C B là 2V V V 3V A. . B. . C. . D. . 3 3 2 4 Câu 2: Hàm số yx=+l n 2( ) 1 có đạo hàm là 2 1 2 1 A. y = . B. y = . C. y = . D. y = . xxl n 2( )1 + 21x + 21x + ( )2 1x l+ n 2 nb2 − 2 b Câu 3: Biết l i m = (a, b , 0a ) và là phân số tối giản. Chọn mệnh đề đúng 21na2 + a A. 29ab22+=. B. 26ab22+=. C. 2 1ab 222+=. D. 2 1ab 922+=. Câu 4: Tập xác định của hàm số yx=−( ) 1 −7 là A. D = +(1; ) . B. D = . C. D = \1 . D. D = +1; ) . 2 Câu 5: Phương trình 5xx 2 5−+11= có tập nghiệm là A. − 1;3 . B. 1;3 . C. − 3 ; 1 . D. −− 3 ; 1 . Câu 6: Giả sử a , b là các số thực dương tùy ý thỏa mãn ab234 = 4 . Mệnh đề nào sau đây là đúng? A. 2log22ab+= 3log 4. B. 2log22ab+= 3log 8. C. 2log3log3222ab+=. D. 2log3log1622ab+=. Câu 7: Hàm số nào trong các hàm số sau mà đồ thị có dạng hình vẽ dưới đây? A. yxx=−−3 31. B. yxx=−−3231. C. yxx=−+3231. D. yxx=−+3 31. Câu 8: Biết a = log32 , b = log53 . Tính log52 theo a và b a b b A. log5 = . B. log5 = . C. log5 = ab . D. log5 = . 2 b 2 ba− 2 2 a Câu 9: Cho hàm số y= f() x có bảng biến thiên như hình
- ax b+ Câu 17: Cho hàm số y = có bảng biến thiên như hình vẽ dưới đây cx +1 Xét các mệnh đề (1) c =1. (2) a = 2. 1 (3) Hàm số đồng biến trên (− −−+ ;11;) ( ). (4) Nếu y = thì b =1. (x +1)2 Số mệnh đề đúng trong các mệnh đề trên là A. 1. B. 4 . C. 2 . D. 3 . x2 1 Câu 18: Cho hàm số y = có đồ thị (C). Chọn khẳng định đúng 3 A. Hàm số có hai điểm cực trị. B. Đồ thị hàm số nhận Oy làm tiệm cận đứng. C. Đồ thị hàm số nhận Ox làm tiệm cận ngang. x2 1 D. fx ( ) =−2ln 3 . 3 x +1 Câu 19: Cho hàm số y = có đồ thị (C). Tiếp tuyến của tại giao điểm của với trục tung x −1 có phương trình là 11 −11 A. yx=+. B. yx=−. C. yx=−21. D. yx= −21 − . 22 22 1 Câu 20: Cho hàm số y = có đồ thị . Chọn mệnh đề đúng: x A. (C) đi qua điểm M (4 ; 1) . B. Tập giá trị của hàm số là 0; + ) . C. Tập xác định của hàm số D =0; + ). D. Hàm số nghịch biến trên (0; + ). 2 ( x −−11) Câu 21: Đồ thị hàm số y = có tổng số bao nhiêu đường tiệm cận đứng và tiệm cận ngang? xx2 +−28 A. 3. B. 2 . C. 1. D. 4 . Câu 22: Cho hình chóp SABCD. có đáy ABCD là hình vuông cạnh a , SA vuông góc với mặt phẳng ( ABCD) và SA= a 6. Gọi là góc giữa SB và mặt phẳng (SAC). Tính sin , ta được kết quả là
- A. 92 triệu. B. 96 triệu. C. 78 triệu. D. 69 triệu. 21x + Câu 32: Đường thẳng yx=−1 cắt đồ thị hàm số y = tại hai điểm AB, có độ dài x − 2 A. AB = 46 . B. AB = 42 . C. AB = 52. D. AB = 25. Câu 33: Giá trị lớn nhất của hàm số yx= e .cx o s trên 0; là 2 1 3 2 A. 1. B. .e 3 . C. .e 6 . D. .e 4 . 2 2 2 42 Câu 34: Cho hàm số y x= x − + + 23 có đồ thị (C). Gọi h và h1 lần lượt là khoảng cách từ các điểm h cực đại và cực tiểu của (C) đến trục hoành. Tỉ số là h1 3 3 4 A. . B. 1. C. . D. . 2 4 3 1 Câu 35: Phương trình sin x = có bao nhiêu nghiệm thuộc khoảng (0; 2 0 2 2 ) . 2 A. 1011. B. 2020 . C. 1010 . D. 2022 . 2 10 1 2 3n Câu 36: Tìm hệ số của số hạng chứa x trong khai triển fxxxx( ) =+++ 12( ) với n là số tự 4 32n− nhiên thỏa mãn ACnnn+=14 . 510 39 79 910 A. 2 C19 . B. 2 C19 . C. 2 C19 . D. 2 C19 . Câu 37: Cho một hình nón đỉnh S có độ dài đường sinh bằng 2 , độ dài đường cao bằng 1. Đường kính của mặt cầu chứa S và chứa đường tròn đáy của hình nón đã cho là A. 2 . B. 4 . C. 1. D. 23. Câu 38: Có bao nhiêu giá trị nguyên của tham số m để phương trình 4xx−mm .2+1 + 3 − 6 = 0 có hai nghiệm trái dấu A. 3. B. 5 . C. 4 . D. 2 . Câu 39: Cho hình chóp S A. B C có đáy ( ABC) thỏa mãn ABa=== ACa,2,120 BAC ; SA vuông góc với mặt phẳng ( ABC) và S A a= . Gọi M là trung điểm của BC , tính khoảng cách giữa hai đường thẳng SB và AM . a 2 a 3 a 2 a 3 A. . B. . C. . D. . 2 2 3 4 23a Câu 40: Cho hình chóp S. ABC có SA = và SA vuông góc với mặt phẳng ( ABC). Đáy ABC có 3 BC= a và BAC =150 . Gọi MN, lần lượt là hình chiếu vuông góc của A lên SB, SC . Góc giữa hai mặt phẳng ( AMN) và ( ABC) là A. 600 . B. 450 . C. 300 . D. 900 .
- S Q M P N A D B Q' C M' P' N' S' 2a3 22a3 2a3 22a3 A. . B. . C. . D. . 72 81 24 27 Câu 46: Cho hàm số bậc ba y f= x ( ) có đồ thị như hình vẽ Tìm số điểm cực trị của hàm số yfgx= 2 ( ( )) với gxxxxx( ) =−+−22424 A. 17 . B. 21. C. 23. D. 19. Câu 47: Cho hàm số bậc bốn yfx= ( ) có đồ thị như hình vẽ dưới đây. Có bao nhiêu giá trị nguyên của tham số m − 2021;2021 để phương trình 2 ( f22222( x) +− xm) +( mf ++2 x xm1441++)( +( 36) = 0 ) ( )2 có đúng 6 nghiệm phân biệt. A. 2022 . B. 4043. C. 4042 . D. 2021. Câu 48: Cho hàm số yfx= ( ) có đạo hàm liên tục trên (0; ) thỏa mãn f ( x) =+ f( x).cot x 2 x .sin x . 2 Biết f = . Tính f . 24 6
- BẢNG ĐÁP ÁN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 A C A C A B D C B D B C A C B A D C D D C B B A C 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 C B C A D A B D D D A B D A A D A C A D D C B B A HƯỚNG DẪN GIẢI CHI TIẾT Câu 1: Cho khối lăng trụ tam giác A B C. A B C có thể tích là V , thể tích của khối chóp A. B C C B là 2V V V 3V A. . B. . C. . D. . 3 3 2 4 Lời giải Chọn A 2V Thể tích của khối chóp là . 3 Câu 2: Hàm số yx=+l n 2( ) 1 có đạo hàm là 2 1 2 1 A. y = . B. y = . C. y = . D. y = . xxln() 2+ 1 21x + 21x + ()2x + 1 ln 2 Lời giải Chọn C 2 Hàm số có đạo hàm là y = . 21x + nb2 − 2 b Câu 3: Biết lim = (aba,,0 ) và là phân số tối giản. Chọn mệnh đề đúng 21na2 + a A. 29ab22+=. B. 26ab22+=. C. 212ab22+=. D. 219ab22+=. Lời giải Chọn A 2 n − 21 b =1 2 lim2 = 2a + 1 = 9 2n + 1 2 a = 2 Câu 4: Tập xác định của hàm số yx=−() 1 −7 là A. D =+ ()1; . B. D = . C. D = \1 . D. D =+ 1; ) . Lời giải Chọn C Điều kiện xx− 101 . Vậy D = \1 . 2 Câu 5: Phương trình 5xx−+11= 25 có tập nghiệm là A. −1;3 . B. 1;3 . C. −3;1 . D. −−3; 1 . Lời giải Chọn A
- Và các khẳng định sau (I) Hàm số đồng biến trên (0; + ). (II) Hàm số đạt cực đại tại điểm x =−2. (III) Giá trị cực tiểu của hàm số là x = 0 . (IV) Giá trị lớn nhất của hàm số trên −2;0 là 7 . Số khẳng định đúng là A. 2 . B. 3 . C. 1. D. 4 . Lời giải Chọn B Các khẳng định đúng là: I; II, IV Khẳng định sai là: III: Giá trị cực tiểu của hàm số là y = 3. Câu 10: Cho cấp số cộng (un ) có uu13= −=3;1 . Chọn khẳng định đúng A. u8 = 7 . B. u8 = 3. C. u8 = 9 . D. u8 =11. Lời giải Chọn D Ta có: uuddd31=+ =21322 −+ = . Suy ra: uud81=+= −+=737.211 Câu 11: Một hình nón có thiết diện qua trục là một tam giác cân có góc ở đỉnh bằng 1200 , cạnh bên bằng 2 . Chiều cao h của hình nón là 2 A. h = 2 . B. h =1. C. h = 3 . D. h = . 2 Lời giải Chọn B Tam giác cân có góc ở định bằng 12000 =BSO 60 .
- x +1 ff − (1) 2 I = lim . x→1 x −1 x +1 Đặt t= x −1 = 2( t − 1) ; Khi x →1 thì t →1. 2 x +1 ff − (1) 2 ftf( ) − (1) 11 Suy ra If===−=limlim1.105. − ( ) ( ) xt→→11xt−−12122 ( ) ax b+ Câu 17: Cho hàm số y = có bảng biến thiên như hình vẽ dưới đây cx +1 Xét các mệnh đề (1) c =1. (2) a = 2. (3) Hàm số đồng biến trên (− −−+ ;11;) ( ). 1 (4) Nếu y = thì b =1. (x +1)2 Số mệnh đề đúng trong các mệnh đề trên là A. 1. B. 4 . C. 2 . D. 3 . Lời giải Chọn D axb+−1 Ta có lim11 = + ==xc − = suy ra (1) đúng x→−1− cxc+1 ax+ b a lim== 2 ==ac22 suy ra (2) đúng x→+ cx+1 c Hàm số đồng biến khoảng (− −;1) và (−+ 1; ) nên (3) sai. a−− bc2 b y = = =1 =b 1 suy ra (4) đúng (cx++11)22( x ) x2 1 Câu 18: Cho hàm số y = có đồ thị (C). Chọn khẳng định đúng 3 A. Hàm số có hai điểm cực trị. B. Đồ thị hàm số nhận Oy làm tiệm cận đứng.
- Hàm số có tiệm cận ngang y = 0, không có tiệm cận đứng. Câu 22: Cho hình chóp S A. B C D có đáy ABCD là hình vuông cạnh a , SA vuông góc với mặt phẳng ( A B C D) và S A a= 6. Gọi là góc giữa SB và mặt phẳng (S A C). Tính s in , ta được kết quả là 2 14 3 1 A. s i n = . B. s i n = . C. s i n = . D. sin = . 2 14 2 5 Lời giải Chọn B Dễ thấy BOSACSBSACBSO⊥ =( ) ( ,( )) a 2 BO 14 sin BSO === 2 SB a 7 14 Câu 23: Cho hàm số yfx= ( ) có bảng biến thiên như hình vẽ. Hàm số y=− f( 2 x) đạt cực tiểu tại điểm nào sau đây? 1 A. x = . B. x = 0 . C. x = 2 . D. x =−2. 2 Lời giải Chọn B Lập bảng biến thiên của ta được hàm số đạt cực tiểu tại x = 0 .
- 4 =x 33 25 ==ROA22 27 100 ==SR4. 2 27 2211 Câu 26: Phương trình lnlnlnln0 xxxx−+++= có bao nhiêu nghiệm thực. 3336 A. 3. B. 4 . C. 2 . D. 1. Lời giải Chọn C 2 Đk: x . 3 2 2 1 1 Khi đó, ln x− ln x + ln x + ln x + = 0 3 3 3 6 25 ln0 xx−= = ( thoaû) 33 21 ln0 xx+= = ( loaïi) 33 12 ln0 xx+= = (loaïi) 33 15 ln0 xx+= = (thoaû) 66 Vậy phương trình đã cho có 2 nghiệm thực. Câu 27: Biết phương trình 2log3log272 x +=x có hai nghiệm thực xx12 . Tính giá trị của biểu thức x2 4 Tx= ( 1 ) . A. T = 4. B. T = 2. C. T = 2 . D. T = 8. Lời giải Chọn B Điều kiện xx 0, 1 Ta có 3 2 2log2222xxxx+= 3log +=x 2 7 −+ 2log7 = 2 log7log( 3 0 ) log2 x 1 log2 x = x = 2 2 ()thoaû maõn ñk x = 8 log2 x = 3 Vì x1 x 2 neân x 1 = 2; x 2 = 8. 8 x2 2 4 4 Khi đó: Tx=( 1 ) =( 2) =( 2) = 2.
- TH1: alà số chẵn, a 0, a có 4 cách chọn. 2 Có C4 cách chọn 2 chữ số chẵn từ 4 chữ số chẵn còn lại. 3 Có C5 cách chọn 3 chữ số lẻ từ 5 chữ số lẻ. Có 5! cách sắp xếp b c d e f . 23 Theo quy tắc nhân có: 4 .CC . . 545 ! số được tạo thành. TH2: alà số lẻ, acó 5 cách chọn. 2 Có C4 cách chọn 2 chữ số lẻ từ 4 chữ số lẻ còn lại. 3 Có C5 cách chọn 3 chữ số chẵn từ 5 chữ số chẵn. Có 5! cách sắp xếp b c d e f . 23 Theo quy tắc nhân có: 5.CC45 . .5! số được tạo thành. 2323 Theo quy tắc cộng có: 4 5!5 5!64800CCCC4545 += số được tạo thành. Câu 31: Ông An gửi 200 triệu đồng vào ngân hàng theo hình thức lãi kép theo kì hạn năm, với lãi suất là 6,5% một năm và lãi suất không đổi trong thời gian gửi. Sau 6 năm, số tiền lãi ( làm tròn đến hàng triệu ) của ông là A. 92 triệu. B. 96 triệu. C. 78 triệu. D. 69 triệu. Lời giải Chọn A Đặt số tiền gốc của ông An là: A = 200 triệu. Hết năm thứ nhất, số tiền cả gốc và lãi ông An nhận được là: A1 =+20016,5%( ) triệu. 2 Hết năm thứ hai, số tiền cả gốc và lãi ông An nhận được là: A2 =+20016,5%( ) triệu. . 6 Hết năm thứ sáu, số tiền cả gốc và lãi ông An nhận được là: A6 =+200( 1 6,5%) triệu. Vậy sau 6 năm số tiền lãi ông An nhận được là: AA6 − 92 triệu. 21x + Câu 32: Đường thẳng yx=−1 cắt đồ thị hàm số y = tại hai điểm AB, có độ dài x − 2 A. AB = 46 . B. AB = 42 . C. AB = 52. D. AB = 25. Lời giải Chọn B Phương trình hoành độ giao điểm: x 2 5+ 21 5+ 21 x = 21x + x 2 x = x −1 = 2 . 2 2 x − 2 xx−5 + 1 = 0 5− 21 5− 21 x = x = 2 2 5+ 21 3 + 21 5 + 21 3 + 21 + Với . x= y = A ; 2 2 2 2