Bộ đề khảo sát chất lượng học sinh môn Toán - Năm học 2022-2023 - Sở GD và ĐT Hải Dương (Có đáp án)
Câu 39: Cho hình nón đỉnh S có đường tròn đáy tâm O và góc ở đỉnh bằng 120°. Một mặt phẳng đi qua S cắt hình nón theo thiết diện là tam giác SAB . Biết khoảng cách giữa hai đường thẳng AB và SO bằng 3, diện tích xung quanh của hình nón đã cho bằng 18π√3 .Tính diện tích tam giác SAB .
A. 12. B. 18. C. 21. D. 27.
A. 12. B. 18. C. 21. D. 27.
Bạn đang xem 20 trang mẫu của tài liệu "Bộ đề khảo sát chất lượng học sinh môn Toán - Năm học 2022-2023 - Sở GD và ĐT Hải Dương (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- bo_de_khao_sat_chat_luong_hoc_sinh_mon_toan_nam_hoc_2022_202.pdf
Nội dung text: Bộ đề khảo sát chất lượng học sinh môn Toán - Năm học 2022-2023 - Sở GD và ĐT Hải Dương (Có đáp án)
- UBND TỈNH HẢI DƯƠNG KHẢO SÁT CHẤT LƯỢNG HỌC SINH LỚP 12 SỞ GIÁO DỤC VÀ ĐÀO TẠO NĂM HỌC 2022 - 2023 Bài thi: MÔN TOÁN ĐỀ CHÍNH THỨC Thời gian làm bài: 90 phút, không kể thời gian phát đề (Đề thi gồm có: 06 trang) Mã đề: 101 Họ và tên học sinh: Số báo danh: Câu 1: Cho hàm số fx sin xx cos . Khẳng định nào dưới đây đúng? 1 A. fxx d sin x cos xC . B. fxx d cos2 xC . 2 2 1 C. fxx d sin xC . D. fxx d sin2 xC . 2 Câu 2: Cho hàm số y ax3 bx 2 cx d có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm số đã cho và đường thẳng y 1 là A. 2;1 . B. 1;2 . C. 0;2 . D. 2;0 . Câu 3: Cho hàm số y ax4 bx 2 c có đồ thị như hình vẽ. Điểm cực đại của đồ thị hàm số đã cho có tọa độ là y 1 1 O x 3 4 A. (1; 4) . B. ( 1; 4) . C. (0; 3) . D. ( 3;0) . 6 Câu 4: Tiệm cận ngang của đồ thị hàm số y là x 5 A. y 6. B. y 0 . C. y 6. D. x 5. Câu 5: Trong không gian Oxyz , cho mặt cầu S có tâm I 0;0; 3 và đi qua điểm M 4;0;0 . Phương trình của S là 2 2 A. x2 y 2 z 3 25. B. x2 y 2 z 3 5 . 2 2 C. x2 y 2 z 3 5 . D. x2 y 2 z 3 25 . Câu 6: Trên mặt phẳng toạ độ, điểm biểu diễn của số phức z 3 i có toạ độ là A. 3;0 . B. 3;1 . C. 1; 3 . D. 0; 3 . Trang 1/6 - Mã đề 101
- A. Hàm số đồng biến trên khoảng ; 2 . B. Hàm số nghịch biến trên khoảng ;1 . C. Hàm số nghịch biến trên khoảng 1; . D. Hàm số đồng biến trên khoảng 1; . Câu 19: Trong không gian Oxyz , cho hai điểm M 4; 2;1 và N 5;2;3 . Đường thẳng MN có phương trình là x 5 t x 4 t x 4 t x 5 t A. y 2 4 t . B. y 2 4 t C. y 2 4 t . D. y 2 4 t . z 3 2 t z 1 2 t z 1 2 t z 3 2 t Câu 20: Cho khối chóp S. ABC có SA,, AB AC đôi một vuông góc. Biết SA 3 a ; AB 4 a ; AC 2 a . Thể tích V khối chóp đã cho bằng A. V 6 a3 . B. V 24 a3 . C. V 4 a3 . D. V 2 a3 . Câu 21: Khối lập phương có độ dài đường chéo là 5 3 . Thể tích của khối lập phương đã cho bằng 125 A. 125 . B. 27 . C. . D. 25 3 . 3 2 3 3 Câu 22: Nếu f( x ) dx 5 và f( x ) dx 15 thì f( x ) dx bằng 1 1 2 A. 25 B. 10 C. 20 D. 3 Câu 23: Họ nguyên hàm của hàm số fx e2x x là 1 x2 1 x2 A. ex C . B. e2x C . 2 2 2 2 1 x2 C. e2x 1 C . D. 2e2x 1 C 2x 1 2 2 Câu 24: Tập nghiệm của bất phương trình ex x 1 e là A. ;0 . B. 0;1 . C. 1;2 . D. 1; . 2023 Câu 25: Cho a là số thực dương khác 1. Giá trị của log 1 a là a 1 1 A. . B. . C. 2023. D. 2023. 2023 2023 Câu 26: Cho hàm số bậc ba y fx có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên dương của m để phương trình fx m có ba nghiệm phân biệt? A. 4 . B. 3 . C. 2 . D. 5 . Câu 27: Cho hình chóp S. ABCD có đáy là hình vuông cạnh a , SA vuông góc với đáy và Trang 3/6 - Mã đề 101
- Câu 35: Trên khoảng 1; , đạo hàm của hàm số y ln x 1 là 1 e 1 A. . B. . C. x 1. D. . x 1 ln x 1 ln x Câu 36: Một bình đựng 5 viên bi xanh và 3 viên bi đỏ (các viên bi cùng màu là khác nhau). Lấy ngẫu nhiên một viên bi, rồi lấy ngẫu nhiên một viên bi nữa. Khi tính xác suất của biến cố “Lấy lần thứ hai được một viên bi xanh”, ta được kết quả 5 5 5 4 A. . B. . C. . D. . 8 9 7 7 2 Câu 37: Biết rằng phương trình 3log2x 2log 2 x 1 0 có hai nghiệm là a , b . Khẳng định nào sau đây đúng? 2 1 A. a b 3 4 . B. ab . C. a b . D. a b 3 2 . 3 3 Câu 38: Hàm số y ax4 bx 2 c với a 0 có đồ thị là hình nào trong bốn hình dưới đây? . A. Hình 3. B. Hình 1. C. Hình 4. D. Hình 2. Câu 39: Cho hình nón đỉnh S có đường tròn đáy tâm O và góc ở đỉnh bằng 120. Một mặt phẳng đi qua S cắt hình nón theo thiết diện là tam giác SAB . Biết khoảng cách giữa hai đường thẳng AB và SO bằng 3, diện tích xung quanh của hình nón đã cho bằng 18 3 .Tính diện tích tam giác SAB . A. 12. B. 18. C. 21. D. 27. Câu 40: Cho hàm số f( x ) liên tục trên . Gọi Fx( ); Gx ( ) là hai nguyên hàm của f( x ) trên thỏa 5 mãn: F(2) 2023. G (0) 5 và F(0) 2023. G (2) 2 . Khi đó f(5 x ) dx bằng 3 3 3 A. . B. 2023 . C. 3 . D. . 2022 2022 Câu 41: Trên tập hợp số phức, xét phương trình z2 2 mz 2 m 2 2 m 0 , với m là tham số thực. Có bao nhiêu giá trị nguyên của m 2023;2023 để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 2 z 2 2 ? A. 4046 . B. 4045 . C. 4043. D. 4042 . Câu 42: Tìm số các giá trị nguyên của x sao cho với mỗi x tồn tại đúng 5 số nguyên y thỏa mãn y2 x 2 y 3 log2 x 2 y 3 . y 3 A. 11. B. 5. C. 10. D. 6 . 2 x 2 Câu 43: Cho bất phương trình log3 x 1 log1 x 2 log 4 x 1 log 3 2. Tổng tất cả các 2 4 nghiệm nguyên của bất phương trình bằng A. 7 . B. 3 . C. 5 . D. 9 . Câu 44: Cho hàm số y fx( ) có đạo hàm liên tục trên đoạn 1;2 và thỏa mãn đồng thời các điều 1 kiện f (1) và fxxfx() ()2 x3 xfx 2 2 (), x 1;2. Gọi S là diện tích hình phẳng giới hạn 2 bởi các đường y fx( ) , trục Oxx, 1, x 2 . Chọn mệnh đề đúng? Trang 5/6 - Mã đề 101
- UBND TỈNH HẢI DƯƠNG KHẢO SÁT CHẤT LƯỢNG HỌC SINH LỚP 12 SỞ GIÁO DỤC VÀ ĐÀO TẠO NĂM HỌC 2022 - 2023 Bài thi: MÔN TOÁN ĐỀ CHÍNH THỨC Thời gian làm bài: 90 phút, không kể thời gian phát đề (Đề thi gồm có: 06 trang) Mã đề: 102 Họ và tên học sinh: Số báo danh: Câu 1: Cho hình chóp đều S. ABC với O là tâm đáy và có SO BC a . Khoảng cách từ A đến mặt phẳng SBC bằng 3a 13 3a 10 3a 21 3a 5 A. . B. . C. . D. 13 10 7 5 Câu 2: Trong không gian Oxyz , cho mặt cầu S có tâm I 0;0; 3 và đi qua điểm M 4;0;0 . Phương trình của S là 2 2 A. x2 y 2 z 3 5 . B. x2 y 2 z 3 5 . 2 2 C. x2 y 2 z 3 25. D. x2 y 2 z 3 25 . a 6 Câu 3: Cho hình chóp S. ABCD có đáy là hình vuông cạnh a , SA vuông góc với đáy và SA (tham 2 khảo hình vẽ). Góc giữa hai mặt phẳng SBD và ABCD bằng S D A B C A. 30 B. 45 . C. 90 . D. 60 . Câu 4: Họ nguyên hàm của hàm số fx e2x x là 1 x2 A. 2e2x 1 C B. e2x C . 2 2 1 x2 1 x2 C. e2x 1 C . D. ex C . 2x 1 2 2 2 Câu 5: Khối lập phương có độ dài đường chéo là 5 3 . Thể tích của khối lập phương đã cho bằng 125 A. 25 3 . B. 27 . C. 125 . D. . 3 Câu 6: Cho A 2; 1; 1 và Px : 2 y 2 z 3 0. Gọi d là đường thẳng đi qua A và vuông góc với P . Tìm tọa độ M thuộc d sao cho OM 3 . 5 1 1 5 1 1 A. 1; 1; 1 ; ; ; . B. 1; 1; 1 ; ; ; . 3 3 3 3 3 3 5 1 1 5 1 1 C. 1; 1; 1 ; ; ; . D. 1;1;1 ; ; ; . 3 3 3 3 3 3 2 3 3 Câu 7: Nếu f( x ) dx 5 và f( x ) dx 15 thì f( x ) dx bằng 1 1 2 A. 25 B. 3 C. 10 D. 20 Trang 1/6 - Mã đề 102
- Câu 22: Cho hàm số y fx( ) có đạo hàm fxx ( ) ( 1)( x 2)2 ( x 3) 3 ( x 5) 4 . Hỏi hàm số y fx( ) có bao nhiêu điểm cực tiểu? A. 1. B. 3. C. 2. D. 4 . Câu 23: Cho hàm số y ax4 bx 2 c có đồ thị như hình vẽ. Điểm cực đại của đồ thị hàm số đã cho có tọa độ là y 1 1 O x 3 4 A. ( 1; 4) . B. (1; 4) . C. ( 3;0) . D. (0; 3) . Câu 24: Trong không gian Oxyz , phương trình mặt phẳng đi qua điểm A 1 ; 2 ; 2 và có vectơ pháp tuyến n 3 ; 1 ; 2 là A. 3xy 2 z 1 0 . B. x 2 y 2 z 1 0 . C. x 2 y 2 z 1 0 . D. 3xy 2 z 1 0 . Câu 25: Tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện z 1 2 i 2 là A. đường tròn I 1; 2 , bán kính R 2 . B. đường tròn I 1;2 , bán kính R 2 . C. đường tròn I 1; 2 , bán kính R 2 . D. đường tròn I 1;2 , bán kính R 2 . 2023 Câu 26: Cho a là số thực dương khác 1. Giá trị của log 1 a là a 1 1 A. . B. . C. 2023. D. 2023. 2023 2023 1 1 Câu 27: Cho f x dx 3. Tính tích phân 2fx 1 dx . 2 2 A. 9 . B. 3 . C. 5 . D. 3. Câu 28: Hàm số y ax4 bx 2 c với a 0 có đồ thị là hình nào trong bốn hình dưới đây? . A. Hình 4. B. Hình 3. C. Hình 2. D. Hình 1. Trang 3/6 - Mã đề 102
- A. 5 . B. 2 . C. 3 . D. 4 . Câu 36: Số cách sắp xếp 3 học sinh nam và 3 học sinh nữ vào một dãy ghế hàng ngang có 6 chỗ ngồi là A. 12 . B. 6. C. 720. D. 36. Câu 37: Cho hàm số fx sin xx cos . Khẳng định nào dưới đây đúng? 1 2 A. fxx d cos2 xC . B. fxx d sin xC . 2 1 C. fxx d sin x cos xC . D. fxx d sin2 xC . 2 Câu 38: Cho hàm số y fx( ) có bảng biến thiên như sau Giá trị cực đại của hàm số đã cho là A. 1. B. 0. C. 5. D. 2. 2 x 2 Câu 39: Cho bất phương trình log3 x 1 log1 x 2 log 4 x 1 log 3 2. Tổng tất cả các 2 4 nghiệm nguyên của bất phương trình bằng A. 3 . B. 5 . C. 7 . D. 9 . Câu 40: Trong không gian với hệ tọa độ Oxyz , cho mặt cầu (Sxyz ):2 2 2 2 xy 4 4 0 và hai điểm A(4; 2;4), B (1;4;2) . MN là dây cung của mặt cầu thỏa mãn MN cùng hướng với u (0;1;1) và MN 4 2 . Tính giá trị lớn nhất của AM BN . A. 17 . B. 41 . C. 7 . D. 4 2 . Câu 41: Giả sử z1, z 2 là hai trong các số phức thỏa mãn z 6 8 zi là số thực. Biết rằng z1 z 2 4, giá trị nhỏ nhất của z1 3 z 2 bằng A. 5 22 B. 20 4 22 C. 20 4 21 D. 5 21 Câu 42: Tìm số các giá trị nguyên của x sao cho với mỗi x tồn tại đúng 5 số nguyên y thỏa mãn y2 x 2 y 3 log2 x 2 y 3 . y 3 A. 11. B. 10. C. 6 . D. 5. Câu 43: Cho hàm số f( x ) liên tục trên . Gọi Fx( ); Gx ( ) là hai nguyên hàm của f( x ) trên thỏa 5 mãn: F(2) 2023. G (0) 5 và F(0) 2023. G (2) 2 . Khi đó f(5 x ) dx bằng 3 3 3 A. 3 . B. . C. 2023 . D. . 2022 2022 Trang 5/6 - Mã đề 102
- UBND TỈNH HẢI DƯƠNG KHẢO SÁT CHẤT LƯỢNG HỌC SINH LỚP 12 SỞ GIÁO DỤC VÀ ĐÀO TẠO NĂM HỌC 2022 - 2023 Bài thi: MÔN TOÁN ĐỀ CHÍNH THỨC Thời gian làm bài: 90 phút, không kể thời gian phát đề (Đề thi gồm có: 06 trang) ĐÁP ÁN Mã đề 101 Mã đề 102 Mã đề 103 Mã đề 104 Mã đề 105 Mã đề 106 Mã đề 107 Mã đề 108 Đáp Đáp Đáp Đáp Đáp Đáp Đáp Đáp Câu Câu Câu Câu Câu Câu Câu Câu án án án án án án án án 1 D 1 A 1 C 1 A 1 D 1 C 1 D 1 C 2 A 2 C 2 A 2 D 2 D 2 B 2 B 2 B 3 C 3 D 3 A 3 A 3 A 3 B 3 B 3 A 4 B 4 B 4 C 4 B 4 A 4 A 4 A 4 C 5 A 5 C 5 D 5 D 5 B 5 B 5 A 5 C 6 D 6 A 6 D 6 C 6 B 6 B 6 A 6 D 7 C 7 C 7 C 7 C 7 A 7 D 7 A 7 D 8 A 8 A 8 B 8 A 8 C 8 C 8 C 8 C 9 C 9 C 9 A 9 C 9 C 9 B 9 D 9 B 10 D 10 B 10 C 10 D 10 C 10 C 10 A 10 C 11 C 11 C 11 D 11 B 11 A 11 A 11 C 11 C 12 D 12 A 12 C 12 B 12 C 12 B 12 B 12 D 13 C 13 A 13 B 13 D 13 D 13 A 13 A 13 C 14 D 14 B 14 B 14 D 14 C 14 C 14 C 14 C 15 B 15 B 15 B 15 C 15 B 15 C 15 B 15 C 16 A 16 D 16 C 16 C 16 A 16 C 16 D 16 B 17 B 17 A 17 A 17 C 17 D 17 A 17 C 17 B 18 A 18 D 18 B 18 A 18 B 18 D 18 D 18 B 19 D 19 C 19 B 19 A 19 C 19 B 19 B 19 A 20 C 20 A 20 D 20 A 20 D 20 D 20 B 20 C 21 A 21 C 21 C 21 D 21 B 21 A 21 A 21 D 22 B 22 A 22 B 22 A 22 A 22 B 22 D 22 B 23 B 23 D 23 D 23 B 23 A 23 A 23 C 23 A 24 B 24 A 24 A 24 D 24 D 24 C 24 C 24 D 25 D 25 B 25 C 25 B 25 A 25 D 25 D 25 D 26 C 26 C 26 B 26 D 26 D 26 A 26 C 26 A 27 D 27 D 27 A 27 D 27 C 27 A 27 B 27 D 28 B 28 C 28 D 28 A 28 C 28 D 28 C 28 A 29 C 29 B 29 D 29 C 29 A 29 B 29 C 29 C 30 D 30 D 30 C 30 B 30 A 30 D 30 A 30 D 31 C 31 A 31 C 31 B 31 B 31 A 31 D 31 B 32 C 32 B 32 B 32 A 32 D 32 D 32 A 32 A 33 B 33 D 33 D 33 B 33 A 33 D 33 A 33 A 34 B 34 A 34 D 34 B 34 C 34 D 34 C 34 D 35 A 35 B 35 D 35 D 35 C 35 B 35 B 35 A 36 A 36 C 36 A 36 C 36 B 36 B 36 D 36 D 37 A 37 D 37 D 37 A 37 D 37 C 37 C 37 A 38 D 38 C 38 A 38 B 38 C 38 D 38 D 38 A 39 B 39 A 39 D 39 B 39 D 39 A 39 B 39 B Trang 1/4